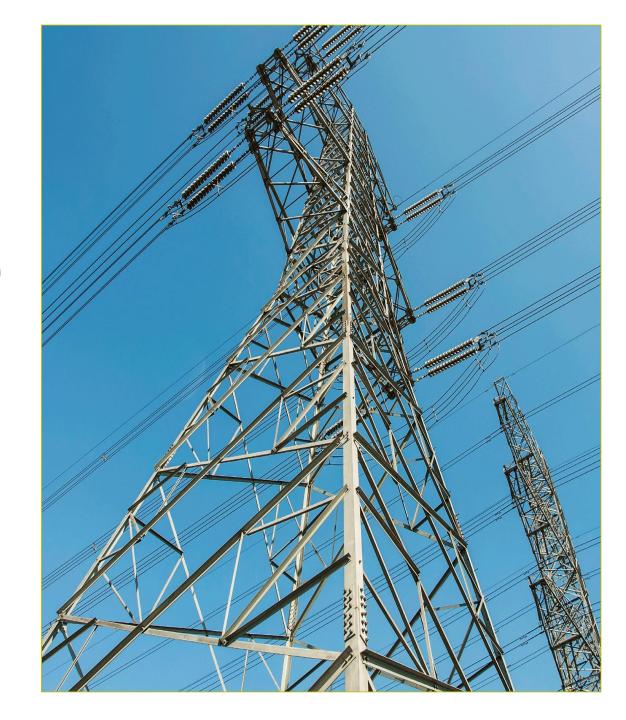


OPTIMAL MAINTENANCE OF HOT DIP GALVANIZED STEEL STRUCTURES

Project presentation Programkontoret


2021-06-21

Björn Tidbeck

RISE Research Institutes of Sweden

Division: Material & Production

Corrosion Protection and Surface Technology

Optimal Maintenance of HDG structures

Project Consortium

- Svenska Kraftnät
- Trafikverket
- Nordic Galvanizers/ European General Galvanizers Acc.
- Svetskommissionen
- Tikkurila Sweden
- Zinga Sweden
- Agaria/ Clean Laser
- IPM Norden
- Pro Chroma/ St Control
- Dala zink

Funded by:

Optimal Maintenance of HDG structures

The Aim of the Project

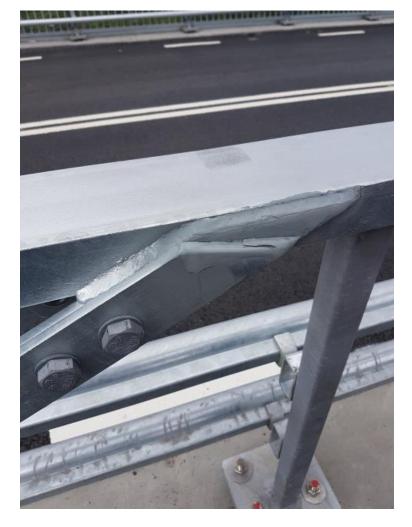
- Compare different methods for maintaining Hot Dip Galvanized steel
- Compare different pretreatment methods for in-field use
- Compare different coating products
- Inspection of reference objects
- Life Cycle Analysis (LCA) and Life Cycle Cost analysis (LCC)
- A holistic best practice will be sought
- Improve the current standardization framework within ISO

Damage and corrosion on HDG steel Is it a problem?

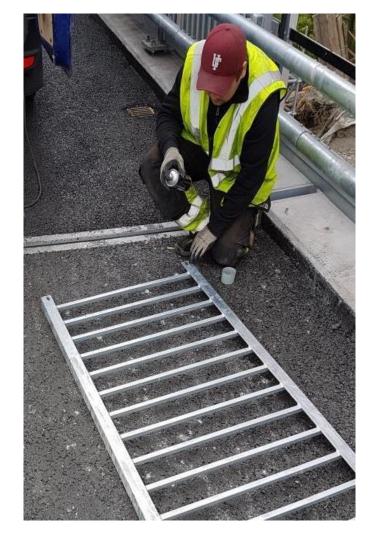
- Expenditure for road and bridge fencing is about 600 mSEK/ annum.
- 30 000 street lights a 20 kSEK each may be exchanged in Linköping
- 8000 street lights shall be tested in Katrineholm
- Could a simplified procedure to repair/ refurbish HDG steel lead to savings for the Swedish infrastructure?

References

PIA –Produktivitets-och Innovationsutveckling i Anläggningsbranschen
Produktivitetsprogram Väg-och broräcken
http://sverigesradio.se/sida/artikel.aspx?programid=160&artikel=2973986
https://www.kkuriren.se/nyheter/varie-stolpe-ska-testas-for-rost/



Requirements for repairing HDG steel


- SS-EN ISO 14713-1:2009 (Sv)
 - Zinc coatings can be left without maintenance if the corrosion rate is such that the function is not affected by corrosion during the design life of the structure
 - Worn/ consumed HDG coating can be refurbished by:
 - Pickling and re-galvanizing
 - By painting, if 20-30µm zinc is left
- SS-EN ISO 1461:2009 (Sv)
 - Maintenance of HDG steel:
 - Thermally sprayed zinc, ISO 2063
 - Appropriate zinc rich coating (DFT 100μm), ISO 3549.

How is it done in the field today?

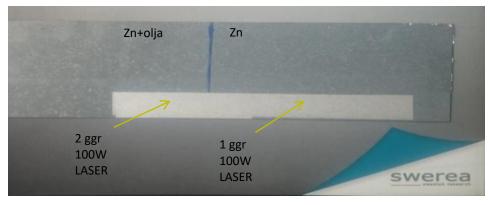
Field exposure of coated samples

Bohus-Malmön, Kvarnvik

Ryda, Enköping

Riksväg 40, Borås

Alternative Technology


Laser-cleaning

- No containment neeed
- No hazardous waste
- One-step pretreatment

Alternative Technology

Zinga – a quick and easy zinc-rich coating

- One component zinc-rich coating 97% zinc
- Fast drying 1-4h
- Robust -10 °C
- Robust RH +90 %
- Relatively high VOC

Alternative Technology

Fontezinc HR

- Water-borne
- 0 % VOC
- No sensitizers
- Resistant to impact
- Extremely efficient
- Tricky to apply

Reference Objects- Fontezinc HR

Statue of Liberty after 33 years

Bathing ramp in Varberg

US Army Causeways after 29 years

Tempe Lake dam gates

Reference Objects- Zinga

Kalvöya, recoated 2014

Seimsbrua, recoated 1992 after 29 years

Rånofoss, recoated 2014

Hausmanns bru, recoated 2014

Reference Objects- TSZn/AI, Zinc ethyl silicate

Åsbobron, TSZn/Al after 20 years

Crown Crucifix of Uppsala Dome Church after 45 years

State of the art refurbishing of power transmission towers

- New Zealand
- Australia
- US
- UK
- Norway

NACE International and IEEE Joint Standard Practice for

Atmospheric (Above Grade) Corrosion Control of Existing Electric Transmission, Distribution, and Substation Structures by Coating Systems

Standardization work in ISO

Revision of SS-EN ISO 14713-1:2009

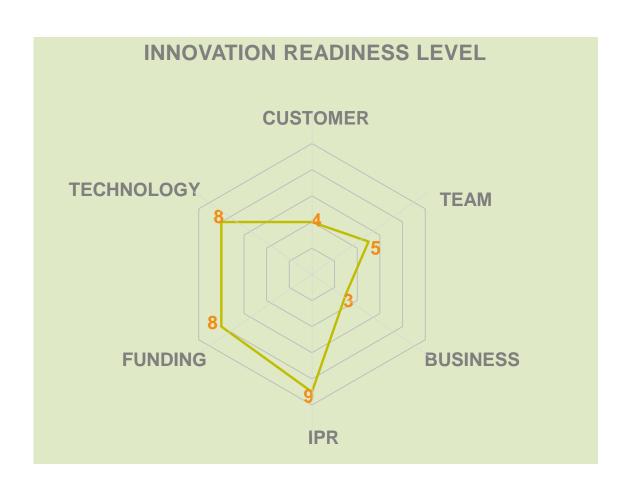
- Swedish votes are cast and influenced via Nordic Galvanizers
- The revision work is being lead by representatives from EGGA
- An EGGA ad-hoc working group has contacted the project leadership for advice
- The project has comunicated relevant additions to the revised version (New Annex)
- The project has comunicated relevant spcifications of "shall-requirements"

Project comunications

Presentation at EGGA annual meeting Antwerpen 2019

- Presentation at Ytskydd Göteborg 2018
- Article in Ytforum 2020 By Nordic Galvanizers
- Co-funding with MRC
- Summary report

Early applications


- The Zinga system has been trialed by Trafikverket for refurbishing railway bridges
- The Induron product has been trialed by anonymous company (NDA-agreement)
- The NASA product has been used on docks in
 - Karlstad
 - Söderhamn
 - Silja terminal

Innovation Readiness Level

Expected project results

