Projekt- och resultatkonferens InfraSweden2030

Climate change impact on safety and performance of existing and future infrastructure

<u>Amro Nasr</u>, Ivar Björnsson, Dániel Honfi, Oskar Larsson Ivanov, Jonas Johansson, Erik Kjellström, and Karl Lundstedt

INFRA SWEDEN 2030

Projektpartner

SKANSKA

Behovsägare

Samhället

TRAFIKVERKET Kommuner Industriaktörer

Project tasks

- 1. Identify potential climate change impacts on bridges and review possible adaptation techniques.
- 2. Develop risk-based prioritization method.
- 3. Develop conceptual framework for bridge design considering climate change risks
- 4. Quantitatively assess (some of) the most critical impacts of climate change on bridges.
- 5. Study the cost-effectiveness of adaptation techniques for (some of) the most critical impacts of climate change on bridges.

Implementation

www.infrasweden2030.se

DONE

NOW NEXT

Results so far

Identified risks

R	= P(H)	P(E H)	$P(D E \cap H)$	C(D)
Description	Hazard: The probability of a climatic hazard (e.g. increased storm activity)	Exposure: The probability of an adverse impact on the bridge as a result of the hazard (e.g. increased storm surge heights)	Vulnerability: The probability of a damage resulting from the increased hazard and exposure	Consequences: The consequences of such a damage
Possible risk management measures	Reduction of GHG emissions (by e.g., introducing more strict regulations, reducing VMT through land use and urban planning strategies, etc.)	Regional adaptation measures, e.g.: • Storm surge barriers • Improved land use planning (e.g. relocation)	Local adaptation measures, e.g.: Increase bridge elevation Insert holes in the bridge superstructure Improve span continuity Use tie-down, restrainers, or anchorage bars	Adaptation measures for reducing cascading effects: Increase robustness Increase network redundancy Improved emergency planning and disaster preparedness Improved understanding of the interdependencies between different infrastructure
	Climate change mitigation	4	Climate change adaptati	on

Adaptation

Discussion points

- Implementation of current results for infrastructure owner?
- Ongoing & future project tasks in this project
 - Risk quantification
 - Designing bridges (infrastructure) for climate change
- Future challenges & opportunities
 - Resource expenditure bridge vs road/rail vs society
 - Future risk acceptability considering climate change
 - Time perspectives

Implementation of results so far

- Risk identification \rightarrow Improve risk awareness & understanding
- Risk prioritization → Which risks relevant for one bridge (or which bridge is more critical among a population of bridges)
- Design \rightarrow Decision support for design strategies

Ongoing & future work

Risk quantification – combine climate impacts with vulnerability & consequence

• Adaptation techniques for selected risks – if risk is critical for selected bridge, what can we do about it?

Future challenges & opportunities

 Resource expenditure & distribution for climate change adaptation & mitigation?

Future challenges & opportunities

- Risk acceptance considering future climate situation?
 - Criteria based on indicators which may alter as a result of climate change – what are we willing to accept in 20, 50, 100 years?
- Time perspectives what reference time is relevant and how can this be determined?
 - Bridge obsolesce
 - Technological innovations / developments
 - Etc.

Other...

Some specific ongoing work

Design for climate change

- Developing a conceptual framework for the design of infrastructure in a changing climate with the following 5 stages:
 - Importance ranking
 - Identification of potential climate change impacts
 - Assessment of the potential climate change impacts
 - Design strategy selection
 - Assessing the acceptability of the final design

In-depth risk quantification

• Quantifying the impact of climate change on the creep of concrete

In-depth risk quantification

• Characterizing climate change impact uncertainty.

Selected publications from project

Nasr, A., Björnsson, I., Ivanov, O. L., Johansson, J., Honfi, D., & Kjellström, E. (2019). A review of the potential impacts of climate change on the safety and performance of bridges. *Sustainable and Resilient Infrastructure*. doi: 10.1080/23789689.2019.1593003 (https://www.tandfonline.com/doi/full/10.1080/23789689.2019.1593003)

Nasr, A., Kjellström, E., Björnsson, I., Honfi, D, Ivanov, O. L., & Johansson, J. (2019). Bridges in a changing climate: A study of the potential impacts of climate change on bridges and their possible adaptations. *Structure and Infrastructure Engineering*. doi: 10.1080/15732479.2019.1670215 (https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1670215)

Nasr, A., Björnsson, I., Honfi, D., Ivanov, O. L., Johansson, J., & Kjellström, E. (Submitted Manuscript). Risk-based prioritization method for considering the effects of climate change on bridges. *Manuscript submitted for publication*

Nasr, A., Ivanov, O. L., Björnsson, I., Honfi, D., Johansson, J., & Kjellström, E. (2019) Klimatförändringars inverkan på broars säkerhet och prestanda : En översyn av potentiella effekter och anpassningsåtgärder. TVBK 3072. Division of Structural Engineering, LTH. (https://lup.lub.lu.se/search/publication/3f8c0a3c-7e2c-42e5-bc42-4f71f0ec43da)