Facilitating maintenance of existing bridges through Digital Twins

Vanessa Sabacka

Supervisors: Björn Täljsten^a, Thomas Blanksvärd^b, Cosmin Popescu^{a,c}

- ^a Luleå University of Technology (LTU)
- ^b SKANSKA
- ^cSINTEF Narvik AS

Purpose of the project

Bridge Management System using digital models and Digital Twins:

- Increasing research on Digital Twins in different industries, but Engineering/Construction is still behind manufacturing and aerospace in the maturity of digital twins.
- Potential for increasing efficiency and automation in bridge management through Digital Twins.

METHODOLOGY

From the literature review, the approach and the methodology to achieve BMS through Digital Twins were defined.

BRIDGE MANAGEMENT SYSTEM

After validation of the methodology, input from Trafikverket and case study to define BMS.

LABORATORY TESTS

Testing the methodology in small scale tests and later in a full scale bridge test.

METHODOLOGY:

Asset management of bridges through Digital Twins:

METHODOLOGY:

Asset management of bridges through Digital Twins:

METHODOLOGY:

Asset management of bridges through Digital Twins:

Neutral format to exchange of data between non-native file types and digital building models.

LABORATORY TESTS: Small scale

Three point bending test in a reinforced concrete beam to evaluate:

Data from tests:	
Strain (tension/compression) x Force	Strain Gauges
	FE
Strain (groove, tension/compression) x Force	FOS
Strain (concrete, tension/compression) x Force	FE
Displacements x Force	LVDT
	FE
Surface deformation	DIC

Installing FOS

casting

Speckle pattern

Cracks

DIC system set up

LABORATORY TESTS: NDT

- Data acquisition through non-destructive testing (NDT) to evaluate the current condition of the bridge.
- NDT for bridge management: feed as/is model, compare construction plans with real conditions.

Cover-meter

Cover-meter

ultrasound

Augmented reality

LABORATORY TESTS: Large scale

<u>Future plans:</u> replicate methodology in full scale Trough Bridge test.

- Fiber Optic Sensors
- Non-destructive tests
- Digital Image Correlation
- Photogrammetry
- BIM model
- FE model

BRIDGE MANAGEMENT SYSTEM:

BRIDGE MANAGEMENT

Test and

- Fiber Optic Sensors
- Non-Destructive Tests
- **Digital Image Correlation**
- Photogrammetry
- BIM model
- FE model

Results from:

- Literature review
- Laboratory tests
- Case study
- Input from Trafikverket

Develop system:

BRIDGE MANAGEMENT SYSTEM:

Questions

Questions

- Is it better to have a "one-stop-shop" system or compatibility between software?
- How can existing BMS adapt to the technology?
- What is the contribution to a sustainable environment and society?
- What is the potential benefit of the innovation, i.e. the BMS?
- Which parties are involved in the project?
- What feels most difficult right now?
- What measures are required disseminate results and reach a broader market?

