

Climate change impacts to infrastructure

- Well-functioning and resilient infrastructure are critical, especially in times of crises and natural disaster
 - Evolving risk of climate change further highlights this need!
- What climate change related risks are relevant and how can our infrastructure be adapted/designed with this in mind?

Overview of PhD project

Financing:

INFRA SWEDEN 2030

Results – risk identification

- S- Serviceability risks
- G- Geotechnical risks
- I- Increased demand risks
- A- Accidental loads risks
- E- Extreme natural hazards risks
- O- Operational risks

Higher frequency/intensity of storms

Higher **flooding** risks / Permanent inundation due to SLR

Identified climate-change risks on bridges.

UNIVERSITY

Results – risk ranking

Results – quantitative assessment of some risks

- Using climate change projections to quantify climate change impacts
 - Concrete creep
 - Decay of timber
 - Thermal loads for bridges (expansion)

Results – quantitative assessment of some risks (creep)

Results – quantitative assessment of some risks (creep)

The results depend significantly on the creep model used.

- As a result of creep, stress redistribution between the concrete and steel occurs (from concrete to steel).
- The figure shows the probability of exceeding the yield strength.

Results – quantitative assessment of some risks (timber decay)

Results – adaptation techniques

R =	= P(H)	P(E H)	$P(D E\cap H)$	C(D)
cription	Hazard: The probability of a climatic hazard (e.g. increased storm activity)	Exposure: The probability of an adverse impact on the bridge as a result of the hazard (e.g. increased storm surge heights)	Vulnerability: The probability of a damage resulting from the increased hazard and exposure	Consequences: The cons of such a damage
sible risk nagement nsures	Reduction of GHG emissions (by e.g., introducing more strict regulations, reducing VMT through land use and urban planning strategies, etc.)	Regional adaptation measures, e.g.: Storm surge barriers Improved land use planning (e.g. relocation)	Local adaptation measures, e.g.: Increase bridge elevation Insert holes in the bridge superstructure Improve span continuity Use tie-down, restrainers, or anchorage bars	Adaptation measures for cascading effects: Increase robustness Increase network ro Improved emergen and disaster prepar Improved understa interdependencies

Results – design for climate change

- Design strategies: build to repair, planned adaptation or design based on selected scenario
- Some significant challenges:
 - Deep uncertainties in climate projections
 - Incorporating adaptability in design
 - Establishing acceptance criteria
 - Going from research to practice
 - **—** ...

