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Abstract: Concrete, a well-established and well-characterized building material, is also the most used building material in the world.
However, many old and new-build structures suffer from premature failures due to extensive deterioration and decreased load-bearing capac-
ity. Consequently, structural monitoring systems are essential to ensure safe usage of concrete structures within and beyond their designed
life. Traditional monitoring systems are based on metallic sensors installed in crucial locations throughout the structure. Unfortunately, most
of them have relatively low reliability and a very short life span when exposed to often very harsh environments. The ideal solution is
therefore to develop a smart concrete having self-sensing capability. A number of studies have shown that conductive cementitious matrixes
will undergo changes in their electrical resistivity with variations of stresses and strains or development of microcracking. This behavior can
be used as a reliable tool to measure changes. This review provides a comprehensive overview of several nonconductive matrixes, with
a special focus on portland cement–based materials, showing self-sensing capabilities by description of detection mechanisms, sensing capa-
bilities, limitations, and potential applications. DOI: 10.1061/(ASCE)MT.1943-5533.0002901. © 2019 American Society of Civil
Engineers.
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Introduction

Deterioration of concrete can originate from the corrosion of
reinforcement (Cabrera 1996), carbonation (Chi et al. 2002), frost
and frost deicing salt attack, seawater attack, and alkali silica re-
action, among others (Boyd and Skalny 2007; Darwin et al. 2008).
The presence of a monitoring system enables evaluation and as-
sessment of the extent of damage, and estimation (Yazdani and
Mohanam 2014) of the remaining load-bearing capacity (Housner
et al. 1997). Early detection of developing damages and successive
application of a proper repair mechanism enhances the durability
and prevents reduction of or even elongates the life span of affected
concrete structures (Rana et al. 2016). Structural health monitoring
(SHM) is a method aiming to detect the damage of civil structures
(Aggelis et al. 2014; Chang et al. 2003; Han et al. 2015a; Sun
et al. 2010; Ye et al. 2014) especially bridges, dams, roads, and
high-rise buildings. SHM uses embedded sensors designed to
discover and measure various crucial parameters like stress, strain,
crack formation, humidity, and chloride content. Unfortunately,

most have serious constraints related to poor durability, high cost,
and short lifespan (Monteiro et al. 2017).

A new generation of monitoring systems being widely studied
at present is based on a self-sensing portland cement–based
matrix. The binder matrix itself acts as a sensor using changes
in electrical properties when subjected to stress or strain. Theo-
retically, the self-sensing capability should be able to produce
systems that are significantly more reliable, accurate, and sensitive
but at lower cost and ensuring a longer service life. This paper
reviews sensing mechanisms and effects of various types of
conductive materials on the monitoring capabilities of modified
nonconductive matrixes, with a special focus on portland cement–
based matrixes.

Sensing Mechanism in Nonconductive Matrixes

Nonconductive or poorly conductive composites (i.e., cementitious
polymers and ceramics) are widely used in electronics, packaging,
as adhesive, interconnections, and electromagnetic shields as well
as in automotive, aerospace, and space industries (Awaja et al.
2016; Chen and Chung 1995). Cement-based materials are classi-
fied as quasi-brittle materials (Bajare et al. 2012). A hardened ce-
ment matrix shows limited electrical conductivity only in the wet
state. The addition of electrically conducting material, including,
for example, carbon fiber, carbon black, or steel fiber, can induce
some conductivity, which could be in some cases utilized in limited
structural health monitoring (Wang and Chung 2000). The sensi-
tivity of such a system depends on the type, quantity, and distribu-
tion of the incorporated conductive material. A uniform distribution
combined with a sufficient amount of conductive material can cre-
ate a conductive path throughout the binder matrix. The con-
ductivity of such a system will change with the applied load or
development of internal damage such as microcracks. The relation
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between the electrical conductivity and amount of the conductive
phase shows a maximum threshold value, which marks the maxi-
mum sensitivity of the matrix. Below and above the threshold
value, the sensitivity decreases (Baeza et al. 2010). The value is
commonly named as the electrical percolation threshold (EPT)
(Zeng et al. 2011).

Strain Sensing

Strain sensing refers to the ability of certain materials to sense strain
or stress through a change of the electrical resistance when exposed
to various forces, i.e., so-called piezoresistive behavior. For a poly-
mer matrix composite, the strain sensitivity is defined as the ratio
between the reversible change of the fractional resistance ðΔR=R0Þ
and the strain amplitude (Chung 2002a). Damage sensitivity is re-
lated to the irresistible increase in resistance. The measurement of
the electrical response during loading is recorded and used to es-
timate the strain value (Kuronuma et al. 2012). Resistivity increases
due to progressive breakage of the conduction paths under tensile
loading, whereas resistivity will decrease in compression due to the
fiber push-in, thus increasing the chance of fibers in the adjacent
laminae touching one another along the direction of fiber orienta-
tion (Chung 1998, 2002a). As a result, electrical resistance rises
along the perpendicular direction and declines along the longitudi-
nal direction (Chung 2002a). The measurement of irreversible
strain allows structural health monitoring, and the sensing of
reversible strain permits dynamic-load monitoring.

The strain sensitivity of composites is measured by calculating
the so-called gauge factor (GF). The GF is defined as the ratio of
fractional change of the electrical resistance to the fractional change
of the strain ðΔR=R0=εÞ. A higher GF indicates better strain sen-
sitivity. Continuous carbon fiber in a polymer matrix creates a sen-
sitive strain sensor having a GF of up to 38. A cement-based matrix
with embedded short carbon fibers can reach a very high strain-
sensing capability with GF up to 700 (Chung 1998). Higher con-
tents of nanoconducting materials are required if materials are
exposed to larger strain/stress levels to prevent premature breakage
of the fibers. Nanocomposites have shown sufficiently high strain
sensitivity when the filler content is close to the percolation thresh-
old (Georgousis et al. 2015).

Fatigue Sensing

Fatigue is a common cause of damage of structures subjected to
repeatable dynamic loading. The measurement of the electrical re-
sistivity proved to be an efficient method to determine fatigue in
cyclic loading. Wang et al. (1999) showed that with carbon-fiber

polymer-matrix composites, fatigue sensing can be achieved. It
can be clearly seen that the peak of ΔR=R0 has increased signifi-
cantly from approximately 50% fatigue life onward, as shown
in Fig. 1. At 218,277 cycles in Fig. 2 (55% of fatigue life),
ΔR=R0 showed a continuous increase from cycle to cycle and
reached 396,854 cycles when fatigue failure took place. This
behavior shows that fiber breakage increased resistivity in the com-
posites. The degree of the damage depended on how the resistivity
of cycles changes. Minor fatigue damage was reported when the
resistivity increased discontinuously in spurts. A gradual increase
in resistivity was attributed to severe fatigue damage with more
extensive fiber breakage.

Wang et al. (2008) studied the sensitivity of a reinforced con-
crete beam incorporating a layer of short carbon fiber–reinforced
concrete (CFRC) with diameter and length of carbon fibers of
6 μm and 5 mm, respectively. The aim was to determine its sensing
capability under applied repeated fatigue flexural loading at a stress
amplitude equal to 0.8 of the ultimate stress. The results showed
that ΔR=R0 increased with applied loading and decreased during
unloading in each cycle. Within the first five cycles, the fractional
resistance increased slightly from 2.8% to 3.6% due to occurrence
of small damage. The failure of the beam occurred after 38 loading
cycles, with irreversible fractional resistance increasing up to 179%
of its initial value. Limited damage caused only a small reversible
change in electrical resistivity due to rearrangement of the fiber
distribution. An irreversible increase of the electrical resistance
was caused by major damage to and breakdown of the conductive
network and fibers. Similar effects were also reported byWang et al.
(2006).

Temperature Sensing

High-temperature sensing is essential in modern power plants,
especially in turbine engines, coal gasification systems, materials
processing systems, and energy systems (Chung 2002a; Leal-
Junior et al. 2018; Moraleda et al. 2013; Zhao et al. 2014). Several
different methods are well-studied and used for monitoring in
those harsh environments (Zhao et al. 2014). Thermistors, thermo-
couples resistance, and temperature detectors are traditional sensors
using changes in electrical resistivity with temperature variations
(Leal-Junior et al. 2018; Tapetado et al. 2015). In conductive
polymer composites, the electrons overcome the potential barrier,
leading to the so-called tunneling effect. If the distance between
adjacent conductive materials is small enough, an effective conduc-
tive path is formed. When the path is long enough, it contributes to
the conductivity of the composite. A composite with a cellular
structure is sensed in a negative temperature coefficient unit

Fig. 1. Variation of the peak ΔR=R0 with the percentage of fatigue life. (Adapted with permission from Springer Nature: Springer, Journal of
Material Science, “Sensing damage in carbon fiber and its polymer-matrix and carbon-matrix composites by electrical resistance measurement,”
X. Wang, S. Wang, and D. D. L. Chung, © 1999.)
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(NTCU) [Fig. 3(a)]. The resistivity of the composite decreases with
increasing temperature.

In contrast, a composite without a cellular structure is used as a
sensitive material in the positive temperature coefficient unit
(PTCU) [Fig. 3(b)]. In this case, the resistivity of the composite
increases with increasing temperature (Wang 2015). An increase
in temperature leads to an expansion of the matrix, which increases
the distances between the conductive materials. As a result, the re-
sistivity of the composite in the PTCU increases. On the other hand,
in the NTCU, the resistivity of the composite decreases when the
temperature increases due to expansion of the gas-filled voids. Due
to this expansion, the distances between the conductive fillers are
reduced, and more conductive networks are formed.

Fig. 4(a) shows the effects of the temperature on the resistivity
of polymeric matrixes with conductive filler in NTCU and Fig. 4(b)
shows the effects in PTCU systems. PTCU based on a carbon black–
filled silicone rubber composite and NTCU based on a carbon-
nanotube–filled polyurethane foam composite are good examples

where the effective temperature range for the measurement is
between 25°C and 75°C, respectively (Wang 2015). Due to changes
in electrical resistivity with increasing temperature, epoxy-based
matrixes with continuous carbon fibers used for temperature sensing

Fig. 2. Variation of ΔR=R0 with number of cycles in fatigue test in polymer matrix composite with carbon fiber. (Adapted with permission from
Springer Nature: Springer, Journal of Material Science, “Sensing damage in carbon fiber and its polymer-matrix and carbon-matrix composites
by electrical resistance measurement,” X. Wang, S. Wang, and D. D. L. Chung, © 1999.)

Fig. 3. Conductive polymer composite: (a) with cellular structure; and
(b) without cellular structure.
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acted as a thermistor (Chung 2002a; Wang and Chung 1998b, 1999)
and thermocouple (Chung 2002a; Wang and Chung 1998a).

Crack and Microcrack Sensing

Microcracking, which is one of the major causes of premature fail-
ure of composite materials (Awaja et al. 2016; Nairn 2000; Pang
and Bond 2005), is difficult to detect due to the limited resolution of
visual methods. An alternative method is to use conductive fillers
embedded in the matrix to detect the propagation of cracks and
microcracks through determination of fibers acting as bridges
across cracks (bridging effect) (Awaja et al. 2016). Shindo et al.
(2012) investigated the relation between crack formation and the
electrical resistance of polymer composites incorporating multi-
walled carbon nanotubes (MWCNTs) in tensile loading. The speci-
men was notched with an initial crack length a0 equal to 9.3 mm
(Fig. 5). During fracture testing, the load was applied at an angle

between 0° and 30°. The formed crack propagated straight at the
load angle of 0° and inclined at the load angle of 30°. The electrical
resistivity increased according to the projected crack length in-
crease, as shown in Fig. 6 (Takeda et al. 2013). MWCNT-based
polymer composites were used successfully as a damage sensor
by Li et al. (2008a).

Currently Used Systems for Monitoring of Concrete
Structures

Nondestructive testing (NDT) is commonly applied to assess the
quality of concrete structures. Examples are ultrasonic inspection
and Foucault current technique (eddy current technique) used for
crack detection. A so-called half-cell potential test is used to assess
corrosion of the reinforcement. NDT techniques are often limited to
a single-point measurement (Helal et al. 2015). At present, the
SHM system has become a well-known method aiming to diagnose
the condition of a structure and formulate a prognosis related to
various possible environmental conditions. The SHM system con-
sists of various measurement techniques, and each technique has its
own application area, advantages and limitations.

A concrete structure can be monitored at any point of its service
life. The collected data are crucial for forecasting and risk manage-
ment with respect to the SHM. The SHM integrates NDT tech-
niques using remote sensing and smart materials to create smart
self-monitoring structures. The SHM system consists of sensors
and data collection and evaluation systems (Aggelis et al. 2014;
Sun et al. 2010). Sensors are chosen based on planned measure-
ments and monitoring strategy. Each type of sensor has different

Fig. 4. Variation of resistivity with temperature in (a) carbon nanotube–filled polyurethane foam composite; and (b) carbon black–filled silicone
rubber composite. [© 2015 IEEE. Reprinted, with permission, from L. Wang, “Differential structure for temperature sensing based on conductive
polymer composites,” IEEE Transactions on Electron Devices 62 (9): 3025-3028.]

Fig. 5. Fracture mode I test.

Fig. 6. Variation of resistance change due to crack propagation with
projected crack length. (Reprinted from Takeda et al. 2013, with per-
mission from The Japan Institute of Metals and Materials.)
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sensing capabilities in different applications. Thus the quality of the
result obtained from SHM depends on proper design of the system
(Lim et al. 2006; Ou and Zhou 2008; Sun et al. 2008; Wan and
Leung 2007). The following sections will describe the most com-
monly used sensors.

Fiber-Optic Sensors

A fiber-optic sensor (FOS) is a fiber-based device that uses fiber
optics to transmit light from a superluminescent source. The re-
flected light shows changes of amplitude, phase, frequency, and
polarization state, which are then used to determine changes in tem-
perature and strain (López-Higuera et al. 2011). The fiber optic
consists of three parts as shown in Fig. 7. The core and cladding

layer are made of a dielectric material. The index of refraction of
the cladding material is less than that of the core to reduce the loss
of light transmitted in the core. The coating layer protects the
fiber optic against physical damage. FOS can be classified based
on the light transmitted in the sensing segment, operating principle,
and the application (Fidanboylu and Efendioglu 2009). Some
examples include Frabry-Perot FOS, Fiber Braff grating (FBG),
and Brillouin-scattering-based FOS. FOS can be used in concrete
to monitor strain, displacement, vibration, cracking, corrosion, and
chloride concentration. In old structures, FOS are mounted on the
surface, whereas in new structures, sensors are usually embedded
inside the material. Examples of applications are shown in Fig. 8
(Leung et al. 2008). Fig. 9 gives a schematic overview of available
types of FOS (Fidanboylu and Efendioglu 2009).

Piezoelectric Sensors

The conversion of mechanical energy into electrical energy and
vice versa is the principle utilized in the piezoelectric effect
(Fig. 10). When mechanical stress is applied to a piezoelectric
material, an electrical current or voltage is produced. Conversely,
when an electric current is applied to a piezoelectric material, it will
be polarized, causing it to shrink or expand. This phenomenon en-
ables the detection of impacts and deformations (Tzou et al. 2004).
Piezoelectric materials include, for example, ceramics, polymers,
and composites. Lead zirconate titanate (PZT) is a commonly used
piezoelectric material due to its low cost, light weight, high energy

Fig. 7. Schematic diagram of an optical fiber.

Fig. 8. Possible ways for retrofitting the sensor on an existing structure. [Reprinted from Leung et al. 2008, © MDPI under CC-BY 4.0
(https://creativecommons.org/licenses/by/4.0/).]

Fig. 9. Fiber optic sensor types.
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density, and easy implementation. Application of piezoelectric sen-
sors (PS) as actuators and transducers in the SHM is gradually in-
creasing (Chalioris et al. 2016). Embedded PS can also be used as
aggregates or fillers (Zhang et al. 2017) to harvest energy from ve-
hicles’ movement and for dynamic monitoring of traffic. Such a
system is, for example, able to detect and classify passing vehicles
(Rana et al. 2016).

Magnetostrictive Sensors

The phenomenon of magnetostriction occurs when ferromagnetic
materials, particularly nickel, iron, and cobalt, are able to change
their shape or dimensions when placed in a magnetic field.
Magnetostrictive materials convert magnetic energy to mechanical
energy and vice versa. They are mainly used as transducers for
emitting and receiving elastic waves to detect defects, estimate
the concrete thickness, and determine the position and distribution
of cracks, as well as to monitor acoustic emissions (Ausanio et al.
2005; Calkins et al. 2007; Dong et al. 2011; Hison et al. 2005;
Hristoforou and Ktena 2007).

An example usage of magnetostriction is the so-called electro-
magnetic hammer (EMH). The EMH uses a small magnetostrictive
oscillator and receiver consisting of polycrystallized magnetostric-
tive material (Hattori et al. 2001). The oscillator generates an elastic
wave with wide bandwidth at low frequency, which is enhanced
by applied additional compressive stress. The oscillator is placed
adjacent to the receiver and uses impulse and frequency sweep
drive control modes to characterize and evaluate the propagation
of cracks in concrete. The system records acoustic reflections at
a distance L. Together with the acoustic velocity, v, the delay in
propagation, Δt ¼ 2L=v, and peak frequency, f ¼ 1=Δt can be
obtained. The presence of defects can be calculated by using
L ¼ v=2 · Δt. The experimental results showed high effectiveness
of the system.

Portland Cement–Based Materials Sensing
Incorporating Conductive Fibers

Steel Fiber

Steel fibers (SF) are commonly used to reinforce concrete struc-
tures. They improve the mechanical properties, particularly flexu-
ral and tensile strengths, and limit drying shrinkage cracking.

The primary function of SF in the cementitious matrix is to bridge
forming cracks.

In addition, electrical conductivity can be enhanced by addition
of SF (Shi et al. 2017). A cement paste incorporating 0.36% by
volume of steel fibers and showing sensing capabilities was
produced by Wen and Chung (2003). SFs having a diameter of
8 μm and length of 6 mm were used and tested in a cement matrix
in repeated tensile and compressive stresses. Teomete and Kocyigit
(2013) used between 0.20% and 1.50% by volume of 6-mm-long
fibers. The results showed an increased electrical resistivity
while under tension, which was related to the formation and propa-
gation of microcracks. The change of electrical resistance was pos-
sible above the percolation threshold, which was around 1% by
volume of steel fibers. The highest recorded GF of the cement-
based matrix incorporating the steel fibers was 5,195, which is
much higher than the factors achieved with a metal strain gauge
(Wen and Chung 2003).

Carbon Black

Yet another alternative to produce matrixes with sensing capabil-
ities is to add conductive powders, such as, for example, carbon
black (CB). CB has a high electrical conductivity, nanosize par-
ticles with a high specific surface area to volume ratio, and low
cost (Wen and Chung 2007). The amorphous CB is highly com-
pressible, which supports the creation of conductive paths through-
out the matrix during loading (Leong et al. 2006; Leong and Chung
2004; Wen and Chung 2007). Li et al. (2006, 2008b) fabricated a
strain-sensing cement paste incorporating CB and determined that
that percolation threshold oscillated at around 12%–20% by weight
of the cement. The resistivity decreased linearly with increasing
compressive strain until failure occurred (Fig. 11) (Li et al. 2006).
Crack formation was visualized by a bump on the otherwise nearly
linear correlation. The strain sensitivity of the GF was 55.28 with
15% by weight of carbon black content.

Results obtained by Lin et al. (2011) showed also that cement
matrixes incorporating CB are sensitive to strain. The increase of
the tensile strain caused an increase of the matrix’s electrical resis-
tivity. Interestingly, in the elastic part of the strain-stress curve, the
resistivity remained constant. The formation of microcracks, which
appeared on the resistivity-strain curve as significant positive or
negative variations of the recorded values, were also detectable, as
shown in Fig. 12.

Fig. 10. Piezoelectric effect.
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Carbon Fibers

Carbon fibers (CFs) are formed mostly of carbon atoms and have a
diameter in the micrometer range. Studies showed that the addition
of CF to portland cement–based mortar enhanced the flexural
strength by 85%, flexural toughness by 205%, and compressive
strength by 22%. It was also possible to monitor the fatigue damage
in cement mortar incorporating 0.5% by weight of CFs (Chen and
Chung 1993; Chung and Fu 1996).

The percolation threshold of the CF used in concrete subjected
to 2- and 10-MPa loads was about 1% by weight (Shifeng et al.
2007). The electrical resistivity of CFRC was also found to be tem-
perature sensitive with increasing temperature. First, the resistivity
decreased due to the increase of the tunneling effect. The electrons
move quickly and have more energy to absorb heat energy. After a
certain temperature is reached, the unreacted water is fully evapo-
rated, leading to disconnection of some of the conduction paths,
which results in an increase of electrical resistivity. The results
showed that the CFRC has both negative and positive temperature
coefficients (NTC and PTC) (Fig. 13). Materials with a more de-
fined (narrower) peak marking the minimum resistivity, as in the
case of composites, can be better used as temperature-sensitive
materials.

CFRC showed piezoresistive properties under cyclic loading
(Chung 2002b; Wen and Chung 1999, 2003). In the elastic regime,
the fractional change in resistance decreased at loading and
increased when unloaded. It was found that the irreversible piezor-
esistivity occurred when the strain was larger than 0.2%. Conse-
quently, the CFRC was not suited for stress-strain sensing under
heavy load.

Carbon Nanotubes

Carbon nanotubes (CNTs) have a cylindrical structure consisting
of hexagonal graphite sheets rolled in tubes. It is one of the strong-
est materials in the world (Wong et al. 1997; Yu et al. 2000a, b).
One of the first to observe the CNTs was Iijima (1991). CNTs can
be classified depending on the applied synthesis conditions, which
are single-walled carbon nanotubes (SWCNTs) [Fig. 14(a)] and
multiwalled carbon nanotubes (MWCNTs) [Fig. 14(b)]. CNTs
are characterized by remarkable physical, mechanical, and electri-
cal properties. They are nanosized, have high strength and Young’s
modulus, large deformation response, high ductility, high aspect

Fig. 11. Variation of fractional resistivity with 15% CB with compres-
sive strain. (Reprinted from Cement and Concrete Composites, Vol. 28,
H. Li, H.-G. Xiao, and J.-P. Ou, “Effect of compressive strain on
electrical resistivity of carbon black-filled cement-based composites,”
pp. 824–828, © 2006, with permission from Elsevier.)

Fig. 12. Variation of resistivity with strain response of elastic and
inelastic regime. (Reprinted with permission from V. W. J. Lin,
M. Li, J. P. Lyncha, and V. C. Li, “Mechanical and electrical charac-
terization of self-sensing carbon black ECC,” Proc. of SPIE, Vol. 7983,
2011, © SPIE.)

Fig. 13. Variation of resistivity with temperature of CFRC under a load of (a) 2 MPa; and (b) 10 MPa. [H. Shifeng, X. Dongyu, C. Jun, X. Ronghua,
L. Lingchao, and C. Xin, “Smart properties of carbon fiber reinforced cement-based composites,” Journal of Composite Materials 41 (1): 125–131,
copyright © 2007 by SAGE, reprinted by permission of SAGE Publications, Ltd.]
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ratio, and excellent electrical (Bhatia et al. 2010; Guadagno et al.
2011; Thostenson et al. 2009) and thermal (Guthy et al. 2007;
Thostenson et al. 2009; Yang et al. 2008) conductivity (Thostenson
et al. 2001). Cementitious binders with incorporated CNTs showed
enhanced mechanical properties, including compressive and flexu-
ral strength, in a number of studies, e.g., those by Cwirzen et al.
(2008) and Konsta-Gdoutos et al. (2010). CNTs were also used to
prepare advanced cement-based sensors for SHM (Materazzi et al.
2013).

Due to CNTs’ hydrophobic nature and tendency to agglomerate
as bundles or ropes, the biggest challenge (Hata et al. 2004) is
to ensure their uniform dispersion in the cement matrix. A typical
procedure to disperse CNTs in cementitious matrixes is to use a
surfactant and intensive sonication to produce a homogeneous
water dispersion. The dispersion is then added as a mixing water
to the mix.

The sensing properties of the CNT/cement composites are based
on changes in electrical resistance. During the last few decades, the
possibility of using CNT/cement composites as sensors was studied
by a number of researchers. For example, a self-sensing MWCNT/
cement composite used to monitor traffic showed a remarkable re-
sponsiveness to loads originating from passing vehicles (Han et al.
2009). Nam et al. (2016) showed that the percolation threshold of

the MWCNT cement–based matrix was 0.25% by weight. With this
amount, the highest electrical resistance change was measured. A
vehicle-loading test verified that a sensor based on 0.2% by weight
of MWCNT was clearly able to detect the change of load.

Carbon Nanofibers

Carbon nanofibers (CNFs) are built of cylindrical graphene layers
arranged in stacks of cones, plates, or cups (Guadagno et al. 2013;
Mo and Roberts 2013; Rana et al. 2016) to create a cylindrical
nanostructure (Fig. 15). Because of their stacked structure, the
CNFs have a larger surface area, and the edges of the fiber can
be used to help anchor the fiber in the matrix, meaning better bond
characteristics (Mo and Roberts 2013). CNFs have diameters up to
200 nm, and a length between 50 and 200 μm (Yazdani and
Mohanam 2014). The addition of CNF to a cement-based matrix
not only enhanced the electrical properties, but also the advantages
gained in the concrete’s performance, included increased tensile
and flexural strengths, tensile ductility, and flexural toughness,
and decreased drying shrinkage (Han et al. 2015b).

CNF-reinforced concrete having a sensing capability was re-
ported by Geo et al. (2009). The electrical resistance decreased
when the concentration of CNFs increased due to the tunnel

Fig. 14. Transmission electron microscope (TEM) images of (a) SWCNTs [from K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima,
“Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes,” Science 605 (5700): 1362–1364, © 2004, adapted with
permission from AAAS]; and (b) MWCNTs with 5, 2, and 7 layers, respectively (adapted with permission from Springer Nature: Springer, Nature,
“Helical microtubes of graphitic carbon,” S. Iijima, © 1991).

Fig. 15. (a) Scanning electron microscope (SEM) image of CNFs; (b) TEM image of CNFs; and (c) structure of CNFs. [Adapted (a) and (b) from
Guadagno et al. 2013, © IOP Publishing Ltd. under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).]
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conductivity effect. Otherwise, excess CNFs did not affect the
change in resistivity with increased strain. The stress-strain sensing
of a CNF cement–based matrix has been shown for CNFs concen-
trations below the percolation threshold. Piezoresistive behavior of
a cementitious matrix with CNF was studied under cyclic compres-
sion load in the elastic regime (Konsta-Gdoutos and Aza 2014).
The resistivity tended to decrease during loading, when cracks were
closing, and to increase during unloading, when cracks were open-
ing. The average change of resistivity for the sample containing
0.1% by weight of CNF was 5.0% and therefore higher than for
the sample containing 0.3% by weight of CNF, showing a change
in resistivity of 1.5%. The produced mixes showed a strong piezor-
esistive behavior sufficient for application in strain sensors.

The main problem with matrixes incorporating CNF is to
achieve uniform dispersion of the nanofibers. So far, the best
dispersion was obtained when using an intensive ultrasonication
and surfactants (Yazdanbakhsh et al. 2010). During measurement
of the electrical conductivity in moist conditions, polarization takes
place due to the electrolytic effect. Chemical reactions occurring at
electrodes liberate hydrogen and oxygen, which deposit around the
electrodes in the form of a thin film, which eventually results in a
polarization effect. To eliminate the polarization effect, specimens
should be dry, and a high-frequency alternating current should be
used (Banthia et al. 1992).

Hybrid Fibers

Hybrid fiber systems consisting of two or more types of fibers
showed promising results. The approach aims to combine the best
performances of each fiber type. In the case of a cement-based ma-
trix, the main effort was to use a mix of microscale and nanoscale
fibers, leading to enhanced mechanical properties and better elec-
trical conductivity. Numerous studies focused on hybrid fillers to
improve the self-sensing capacity and sensing reliability and sen-
sitivity. For example, Ou and Han (2009) showed reproducible
piezoresistive cement–based strain sensors in samples exposed
to compressive strain by adding a combination of 0.18% by volume
of CFs and 15% by volume of CB. It was possible to detect the
compressive strain in concrete beams and columns under field
conditions.

Several years later, Luo et al. (2010) investigated the sensitivity
of a hybrid consisting of 0.5% by weight of short CFs and 0.1% by
weight of MWCNTs. Results showed nearly no improvement of
stress-strain sensitivity when compared with the piezoresistive ef-
fect obtained from a mix containing 0.1% by weight of MWCNTs.
The fractional resistivity change was linear and more effective
to improve the self-sensing repeatability and variation stability.
Hybrids of dissimilar nanomaterials containing 0.1% by weight
of both nano-CB and MWCNTs showed more strain sensitivity
under cyclic loading in comparison with material containing only
MWCNTs.

Another study showed that a mix of 15% by weight of CFs and
1% by weight of MWCNTs significantly increased the electrical
conductivity of the cement matrix, enabling it to be used as a sensor
(Azhari and Banthia 2012). Under both monotonically and cycli-
cally applied strain, the material provided better signal quality,
improved reliability, and increased sensitivity in comparison with
composites incorporating only CF. Composites had the greatest
strain-sensing property with incorporation of 0.1% by volume of
CFs and 0.5% by volume of MWCNTs. The GF reached 160.3;
however, the sensing performance was almost the same with ce-
ment composites having 1% by volume of MWCNTs (Lee et al.
2017).

Conclusion

The present paper has reviewed the sensing capability of noncon-
ductive matrixes incorporating various types of conductive materi-
als with a focus on portland cement–based matrixes. In most cases,
addition of conductive materials decreased the resistivity and en-
hanced the mechanical properties of the produced composites.
One of the major issues related to nanomaterials is their uniform
dispersion in a cementitious binder matrix. A summary of observed
advantages and limitations for matrixes incorporating various
types of conductive materials together with percolation threshold
amounts of fibers in some studies, is given in Table 1.
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