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Summary 

This thesis deals with asset management of structures through Building Information 

Modelling (BIM) and Digital Twins. 

Background: Current inspection and management processes for civil structures are 

time-consuming and can even be inaccurate. There is an increasingly high potential to 

improve these processes through recent advances in technology. Digital Twins offer a 

common platform to these technologies, so they can interact and be used to their optimal 

performance. Other industries have significantly advanced in the development of Digital 

Twins, however, in the construction industry there are still many gaps and room for 

improvement. 

Aim and objectives: The main aim of this project was to investigate the status of Digital 

Twins in the construction industry and propose a methodology for a Digital Twin for 

asset management of structures. The three immediate objectives sought are (i) Perform a 

literature review to establish the current practice with digital twins, in both construction 

and other industries, and what are the gaps for asset management of structures; (ii) 

Participate in a pilot experimental program that yields data to a potential digital twin 

prototype; and (iii) Define a methodology for a digital twin for asset management of 

structures which fills the identified gaps. 

Methods of investigation: A literature review was performed and served as basis for 

the development of a methodology for a digital twin. A pilot experimental program was 

defined and performed, and its results were used for BIM and Finite Element (FE) models. 

A webapp was also created using Autodesk Forge and Java programming language, and 

the BIM model was uploaded into it. 

Results: The literature review provided insight into the maturity level of digital twins, 

as well as on bridge inspection, maintenance and monitoring, BIM, facility and asset 

management, and Bridge Management Systems (BMS). A methodology to achieve a 

digital twin for asset management was proposed, and the conducted experimental 

program yielded data results to be used in future research.  

Conclusion: There has been significant progress in technology to improve structural 

assessment and analysis, however, their full potential is still under-explored. A digital twin 

created in a common data environment can provide a platform for these technologies to 

improve efficiency of current practices. Nonetheless, the construction industry is still 

significantly behind other industries such as aerospace and automotive. 

Keywords: Digital Twins, BIM, Asset Management, Common Data Environment, 

Finite Element Modelling, Fiber Optic Sensors. 

  



 

  



IX 

 

 

Table of Contents 

 

Preface V 

Summary VII 

Table of Contents IX 

List of Abbreviations XI 

1. Introduction 1 

1.1 Background 1 

1.2 Hypothesis, aim, objectives and research questions 2 

1.3 Scientific approach 3 

1.4 Outline of the thesis 7 

1.5 Appended papers 7 

1.6 Additional publications 9 

2. Literature review 11 

2.1 Digital Twins: origin and definition 11 

2.2 Common Data Environment: BIM and SHM 12 

3. Experimental program 17 

3.1 Design of experiment and purpose 17 

3.2 Test setup 18 

4. Digital Twin approach 21 

4.1 BIM 21 

4.2 Finite Element 22 

4.3 Common Data Environment 23 

4.3.1 Webapp Viewer 23 

4.3.2 Data Visualization Extension 24 

5. Discussion 27 

6. Conclusions 29 

7. Future research 31 

Acknowledgements 35 

References 35 

 

PAPER I 
PAPER II 

PAPER III 

PAPER IV 

  



 

  



XI 

 

List of Abbreviations 

 

Abbreviation Description 

API Application Programming Interface 

BI Business Intelligence 

BIM Building Information Modelling 

BMS Bridge Management System 

BrIM Bridge Information Modelling 

CDE Common Data Environment 

DIC Digital Image Correlation 

DT Digital Twins 

FE Finite Element 

FOS Fiber Optic Sensors 

IFC Industry Foundation Class 

IoT Internet of Things 

LCCA Life Cycle Cost Analysis 

ML Machine Learning 

NDT Non-destructive testing 

RC Reinforced Concrete 

SG Strain Gauges 

SHM Structural Health Monitoring 

TRL Technology Readiness Level 

UAV Unmanned Aerial Vehicles 

UI User Interface 

 

  



 

  



1 

 

1. Introduction 

1.1 Background 

Planning for maintenance and performing repairs on damaged structures rather than 

replacing them entirely is usually a better alternative both financially and 

environmentally. For new structures, including structural health monitoring (SHM) 

sensors during construction provides information about structural behavior, which 

facilitates future maintenance and can be a valuable investment in the long term. SHM 

sensors can measure traffic, deformation, vibration, displacement, wind, temperature, etc. 

Therefore, for both existing and new structures, there are tangible benefits in 

implementing technological improvements and automation to asset management 

strategies. 

For civil structures such as bridges, tunnels, dams, etc., asset management is here defined 

by four main processes: inspection (damage detection), assessment of current condition 

from inspection data, prediction of future degradation and maintenance planning. 

Therefore, asset management focuses on maintenance and rehabilitation with the goal of 

extending the service life of assets and improving its quality. There have been significant 

advances in technology that can improve the efficiency of each one of these fours 

processes separately. If they are combined in a Common Data Environment (CDE), an 

integrated solution for life cycle management in the form of a Digital Twin (DT) can be 

achieved.  

To determine the current health situation of a structure and plan for maintenance 

accordingly, the first step is to perform an inspection. For bridge structures, routine 

inspections are arranged periodically by administrating agencies. In current inspections, 

damage detection is mostly based on visual examination, and inspection procedures and 

annotations are performed manually. Therefore, these inspections are often time 

consuming, human dependent and sometimes even inaccurate [1]. The impracticality of 

visual inspection for large and complex civil infrastructures has promoted the 

incorporation of condition-based assessment techniques, SHM has thus emerged to 

provide the transition from offline damage identification to near real-time and online 

damage assessment [2]. Among the different non-destructive testing technologies that can 

improve manual inspections, the most common identified in the literature were: 

photogrammetry, laser scanning, ground-penetrating radar, ultrasound, infra-red 

scanning, fiber optic sensors (FOS), unmanned aerial vehicles (UAV), light detection and 

ranging scanning, total station.  

The data acquired by these damage detection and monitoring systems are usually used 

for condition assessment and decision-making regarding maintenance. Often the data are 
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presented only in spreadsheets and graphs; however, if presented directly on Building 

Information Modelling (BIM) models, they gain geometrical and spatial context, 

facilitating their interpretation [3].  

Current practices apply probabilistic methods to predict future deterioration from a 

current condition diagnostic, obtained from the inspection data [4]. However, this 

analysis can be improved by automated assessment tools that employ artificial intelligence 

algorithms [5], combining BIM and Finite Element (FE) models [6], [7], and geographic 

information systems [8]. 

Concerning maintenance planning and bridge management practices, the main suggested 

improvement to current system is the inclusion of an interactive geometric representation 

of the asset through a BIM model. So far, no existing bridge management system (BMS) 

includes this kind of geometric representations of bridges [4], [9]. The link between BIM 

and BMS can be achieved through different methods, most commonly through Industry 

Foundation Class (IFC) and/or programming languages (SQL, C#, Java, Python, 

MATLAB etc.). IFC is an open, neutral standard usable across a wide range of hardware 

devices, software platforms, and interfaces for many different use cases [10]. Allowing 

remote access to data from the system through cloud-based, mobile and/or portable 

technology would also facilitate information access. Furthermore, in a CDE, FE models 

for prediction of future degradation can be incorporated to enhance this analysis. 

The biggest challenge in obtaining a functional digital twin that serves as an integrated 

platform for asset management of structures is the development of a CDE for the different 

data sources. Therefore, the full potential of BIM models post-construction and digital 

twins is still under explored. In other industries, significant applications of DT can be 

found, such as in aerospace, automotive, manufacturing, smart city, and healthcare 

applications [2]. The maturity of development of DT in such industries is much more 

advanced than in the construction industry, in which the concept of what constitutes a 

digital twin is not overall clear, and there is still no consensus as to its formal definition. 

This leads to frequent misconceptions and mislabeling of BIM models and calibrated FE 

models without any significant automation or data flow as digital twins. In this context, 

this study investigates digital twins and how to obtain a CDE for a DT for asset 

management of civil structures. 

1.2 Hypothesis, aim, objectives and research questions 

Hypothesis:  

Digital Twins provide a more efficient and effective alternative to current practices in 

asset management of structures. 
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Aim:  

Investigate the status of Digital Twins in the construction industry and propose a 

methodology for a Digital Twin for asset management of structures. 

Objectives: 

(i) Perform a literature review to establish the current practice with digital twins, 

in both construction and other industries, and what are the gaps for asset 

management of structures. 

(ii) Participate in a pilot experimental program that yields data to a potential digital 

twin prototype. 

(iii) Define a methodology for a digital twin for asset management of structures 

which fills the identified gaps. 

Research questions: 

(i) What are the current challenges in asset management of structures identified 

in the literature? 

(ii) What is the current maturity level of Digital Twins in the construction 

industry? 

1.3 Scientific approach 

Different aspects are involved in the development of a digital twin for asset management 

of civil structures. It should consider the needs of asset management, the problems with 

current approaches, how they can be improved, the existing technology for each task and 

how they can work together to compose the DT. Therefore, the first step of this research 

process was a systematic literature review, presented here in the first appended paper. 

The conclusions from the literature review were the basis for the proposed digital twin 

methodology, most importantly related to: 

• BIM: the potential uses of BIM post-construction are still under-explored. BIM 

provides 3D geometry visualization in a semantically rich model that can contain 

information on materials, construction, design, schedules, etc. Geometric 

representations of the bridges under management (e.g., BIM) should be integrated 

into existing BMS. Autodesk Revit [11] was the BIM software endorsed by most 

authors. 

• Structural Health Monitoring (SHM): essential to provide current condition 

information about the structure, usually through visual inspections, data from 

sensors and Non-Destructive Testing (NDT). The data can reveal unknown 

information for reverse engineering of existing structures, or can follow the 

structure from its initial conception, in the case of new structures. There have 

been major advances in SHM and NDT technologies for bridge inspection, 
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automated damage detection, monitoring, and maintenance. SHM data should be 

introduced and linked to the BMS, preferably directly to a BIM model. 

• Future behavior: an indispensable aspect of a digital twin for asset management is 

the ability to simulate scenarios for future behavior of the structure from current 

degradation to assist decision making in maintenance planning. Life cycle analysis 

should be incorporated into the systems, including integration of construction 

information for comparison with current condition from inspection data, and 

prediction of deterioration to enable better planning of interventions. This can be 

achieved through degradation models, machine learning algorithms and Finite 

Element modelling.  

• Data flow: the development of functional digital twins requires a very complex 

automated data flow, a challenge which has hindered the exploitation of their full 

potential. The use of IFC as a neutral language for communication between 

different platforms is a potential solution for this issue. 

In the second appended paper, the main technologies identified in the literature to 

perform inspection, BIM, damage identification, data transmission and facility 

management of bridges are presented in a framework. From the framework proposed in 

Paper II and further research investigation, in this study a methodology for a DT is 

proposed, divided into three components: BIM model, SHM data, and prediction of 

Future Behavior. Figure 1 shows these three components in a Venn diagram, illustrating 

how they are combined to compose the proposed digital twin.  

 

Figure 1: Three components to the Digital Twin for asset management of structures. 

Besides the function each component has in the DT, a working data flow between each 

connection is essential. Each one-on-one connection between the different components 

in the DT serves to a different purpose. Figure 2 presents the three different connections 

between the components and their role in the data flow of the digital twin.  



5 

 

 

Figure 2: Connection between different components of the DT. 

After the literature review and the definition of the methodology for the DT, including 

the components, connections, and their respective functions, the first step towards the 

development of the DT is to create a CDE connecting BIM and SHM data. As a pilot 

study for the DT, a reinforced concrete beam specimen was analyzed. 

To obtain SHM data, a pilot experimental program named FOS-Beam was designed. 

The program consisted of two reinforced concrete beam specimens tested in three-point 

bending and instrumented with FOS, Strain Gauges (SG) and a Digital Image Correlation 

(DIC) system. This experiment is described in detail in the third appended paper and in 

section 3. Experimental program. 

The BIM model was created using Revit [11], and Autodesk Forge [12] and IFC [10] 

were defined for the CDE. The development of the CDE for the FOS-Beam is described 

in section 4.3 Common Data Environment, along with details on each technology. It is 

worth mentioning that, in the research process, other programs and alternatives were 

investigated and tested before the methodology was defined as it is. Figure 3 illustrates 

the CDE for BIM and SHM data, the technologies employed for each component and 

their connection. 

 

Figure 3: First approach: connection between BIM model and SHM data. 
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For future research, the next step will be the connection of the SHM data, obtained from 

the FOS-Beam experimental program, in the designed CDE though the Data 

Visualization Extension, as explained in section 4.3.2 Data Visualization Extension. Then, 

the methodology will be applied in a case study, a more complex experimental program 

here named Trough Bridges. For this program, two trough bridges have been cast in 

laboratory, instrumented with SG and FOS, and will be subjected to a series of tests in 

2023 (more details in section 7. Future research). The last component of the proposed 

DT, i.e., Future Behavior, will be included in the CDE, which will be adapted 

accordingly to asset management needs and requirements. Figure 4 presents a flowchart 

with the activities concluded and planned to achieve the proposed digital twin for asset 

management. 

 

Figure 4: Flowchart of scientific approach to develop the proposed digital twin. 



7 

 

1.4 Outline of the thesis 

This licentiate thesis is composed by a compilation of articles appended to an extended 

summary of their content. The summary consists of Chapters 1-6, briefly described in 

this session as follows: 

Chapter 1 – Introduction: presents the background, objectives and research questions, 

describes the scientific approach to achieve them and introduces the appended papers. 

Chapter 2 – Literature review: definition and brief history of digital twins, different 

approaches and projects towards CDE and DT. 

Chapter 3 – Experimental program: describes the experimental program and test 

setup. 

Chapter 4 – Digital Twin approach: presents the digital models and common data 

environment for the pilot digital twin. 

Chapter 5 – Discussion: discusses the results and future research in terms of technology 

readiness levels (TRL). 

Chapter 6 – Conclusions: concluding remarks, answers to the research questions and 

proposed hypothesis. 

Chapter 7 – Future research: future tasks and plans to achieve them, presentation of 

the Trough Bridge experimental program. 

1.5 Appended papers 

The core of this thesis consists of four papers: one published journal paper, one journal 

paper manuscript under review and two conference papers. The appended papers are 

briefly presented in this session, including my contribution to each of them. 

PAPER I 

Saback, V., Popescu, C., Blanksvärd, T., & Täljsten, B. (2022). Asset Management 

of Existing Concrete Bridges Using Digital Twins and BIM: a State-of-the-Art 

Literature Review. Nordic Concrete Research, 66, 6, pp. 93-113. DOI: 10.2478/ncr-

2021-0020. 

The first paper is a systematic review of the literature, in which a thorough methodology 

was adopted to review topics related to digital twins for asset management of bridges. 

The main topics covered by the review were bridge inspection, Bridge Information 

Modelling (BrIM), digital twins and bridge management systems. This review constitutes 

the first step in the scientific approach towards the development of digital twins from 

asset management. From its results, the methodology for the proposed digital twin was 
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established. My contribution to this paper included defining the methodology, 

performing the review, and writing the manuscript. 

PAPER II 

Saback de Freitas Bello, V., Popescu, C., Blanksvärd, T., Täljsten, B. (2022). 

Framework for Bridge Management Systems (BMS) Using Digital Twins. Lecture 

Notes in Civil Engineering, 1st Conference of the European Association on Quality Control of 

Bridges and Structures, EUROSTRUCT 2021. Padua, Italy, pp. 687-694. DOI: 

10.1007/978-3-030-91877-4_78. 

The main result of this paper is the proposed framework for facility management of 

bridges using digital twins. The framework is divided into five tasks that compose the 

digital twin: inspection, BIM model, damage identification, data transmission and facility 

management. The main technologies identified in the literature to perform these tasks 

are presented as options to conduct each one of the technologies. My contribution to 

this paper was performing the research, developing the framework, and writing the 

manuscript. 

PAPER III 

Saback, V., Mirzazade, A., Popescu, C., Blanksvärd, T., & Täljsten, B. (2022). 

Correlation between surface deformation and reinforcement strain for RC structures: 

a comparative study between Finite Element and Machine Learning models. [under 

review].  

This paper presents an analysis of correlation between surface deformation, measured by 

a DIC system, and reinforcement strain, measured by FOS. The correlation was evaluated 

through different machine learning (ML) algorithms and a FE model, and the accuracy 

of both methods was compared. The data for the analysis was provided by the FOS-

Beam experimental program, which is presented in detail in the paper. I contributed to 

this paper in the design and execution of the experimental program, analysis of results, 

FE simulations, research and writing the manuscript. 

PAPER IV 

de Freitas Bello, V. S., Popescu, C., Blanksvärd, T., Täljsten, B. (2021). Bridge 

management systems: Overview and framework for smart management. IABSE 

Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Ghent, Belgium, 

pp. 1014- 1022. 

This paper presents a review on current BMS. The review covered different BMS in the 

world, modules of a BMS, and current practices on bridge management. The results were 

analyzed in terms of identified gaps and potential improvements, and a set of management 

activities that compose the scope of a BMS was proposed. My contribution to this paper 
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was designing and performing the review, analyzing the results, and writing the 

manuscript. 

1.6 Additional publications 

Two additional conference papers have been published by the author but are not 

appended to this thesis; they are listed in this section and briefly described below.  

IABSE Congress, Ghent 2021 

de Freitas Bello, V. S., Popescu, C., Blanksvärd, T., Täljsten, B. (2021). 

Framework for facility management of bridge structures using digital twins. IABSE 

Congress, Ghent 2021: Structural Engineering for Future Societal Needs. Ghent, Belgium, 

pp. 629-637. 

This paper presents a review on digital twins, focused on digital twins for bridge 

structures. The paper addresses the concept of digital twins, studies that have proposed 

digital twins for bridges, DT in other industries, and other literature reviews on DT. My 

contribution to this paper was designing and performing the review, analyzing the results, 

and writing the manuscript. 

IABSE Symposium, Prague 2022 

Saback, V., Mirzazade, A., Gonzalez‐Libreros, J., Blanksvärd, T., Popescu, C., 

Täljsten, B., Daescu, C., Petersson, M. (2022). Crack monitoring by fibre optics and 

image correlation: a pilot study. IABSE Symposium Prague, 2022: Challenges for Existing 

and Oncoming Structures – Report. Prague, Czech Republic, pp. 437-444. 

This paper presents partial results from the FOS-beam experimental program. The results 

from strain measurements from the FOS in the rebars are compared with those from the 

DIC system. Strain measurements from FOS positioned inside a groove in the rebar are 

compared with measurements in the concrete adjacent to the rebar. Strain measurements 

from the FOS in the rebars are also compared with those from the DIC system. Lastly, 

crack propagation from DIC images is also analyzed. To this paper, I contributed to the 

design and execution of the experimental program, analysis of results and writing. 
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2. Literature review 

The development of a digital twin for asset management of structures is a comprehensive 

process, which involves different aspects. To understand this process as well as the 

progress made thus far in the construction industry and others, the first step in this 

research project was performing a systematic literature review. The review covered 

bridge inspection, maintenance and monitoring, BIM, facility and asset management, 

Bridge Management Systems (BMS), and digital twins. Issues related to BIM and 

technologies for bridge inspection have been widely discussed in the literature, so the 

review of those topics focused on synthesizing the most recent research and summarizing 

information on best practice. Research on digital twins, on the other hand, is rapidly 

growing but still in its earlier stages, especially in the construction industry. For civil 

structures, there is still only very few digital twin models [2]. Therefore, the review 

focused on establishing ground knowledge on the theme and identifying gaps deserving 

further exploration. The results from the literature review are presented in the first 

appended paper. In this section, a brief review is presented on the origin of digital twins, 

definition of the term, common data environments and different efforts identified to 

achieve digital twins through that. 

2.1 Digital Twins: origin and definition 

The origin of the concept now known as the Digital Twin came from a presentation on 

product life-cycle management given by Michael Grieves in 2002 [13]. Although not yet 

named “digital twin”, the main aspects to its concept were introduced: a real space, a 

virtual space, and a mechanism for mirroring (or twinning) changes in the real and virtual 

spaces [13]. The name “Digital Twin” was introduced later, by the National Aeronautics 

and Space Administration of the U.S.A. (NASA) in its Technology Roadmaps, as digital 

twins were used to replicate the life of air vehicles [14].  

The main aspect that differentiates a digital twin from a digital model is the data flow that 

links digital and real entities throughout the physical system’s life cycle. A more recent 

definition given by Kritzinger et al. [15] separates digital models, digital shadows, and 

digital twins, as illustrated in Figure 5. According to Kritzinger et al. [15], a digital 

representation of an object that lacks any form of automated data exchange with the 

physical object is a digital model. If there is an automated one-way data pathway 

transferring information from the physical object to the digital representation, that is a 

digital shadow [15]. If the automated data pathway is bidirectional, allowing exchange of 

data between the two objects, that consists of a digital twin [15]. Therefore, if there is no 

form of automated data exchange between physical and digital, a digital model should 

not be called a digital twin. Although the research on digital twins is rapidly growing, 
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there is still a significant amount of misconception and wrongful categorization of digital 

models as digital twins. 

 

Figure 5 - Data flow in a Digital Model (left), a Digital Shadow (center), and a Digital Twin (right). 
Adapted from Kritzinger et al. [15]. 

2.2 Common Data Environment: BIM and SHM 

Besides obtaining a CDE that supports the required data flow for a DT, other practical 

challenges also contribute to hindering their application. There is still a lack of tangible 

understanding of the potential benefits (e.g., business models) of DT, a high level of 

expertise and computing demand required, and security concerns with data privacy [16]. 

Pregnolato et al. [16] argue that further advances in modelling and simulation are needed 

to establish DT in architecture, engineering and construction practice. 

Within the construction industry, the research on digital twins for buildings is currently 

ahead of other civil structures. Transmission of sensor data related to user comfort, such 

as temperature and humidity, from physical to digital and vice versa, benefits from 

commercial technology advances for smart home improvements. For civil structures, 

structural assessment and management require different kinds of sensor data, which can 

also face additional challenges, such as remote locations deprived of signal and exposure 

to the elements. The data flow from digital back to physical is also distinct, as remotely 

controlling an aspect related to a bridge is not as straightforward as controlling a 

thermostat, for example. This data flow can be achieved through actuators [17] or 

through the maintenance strategies that are employed due to analysis of the sensor data. 

As established with the definition of Digital Twins in the previous section, the data flow 

from digital and physical entities is required to obtain a proper digital twin model. The 

achievement of this data flow is currently the biggest challenge in this process, as it 

requires interaction in a CDE of data from different platforms that often do not 

communicate directly. In a DT for asset management, a user interface connecting the 

data is also often required so the information can be accessed and retrieved for decision 

making and management.  
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In this study, the first step towards obtaining a DT for asset management of structures is 

the connection of sensor data and BIM model in a CDE. Some strategies towards this 

goal were identified in the literature, most importantly: IFC, “one-stop-shop” 

commercial software, data extracting tools associated with cloud-based servers, and 

programmable interfaces, like Autodesk Forge. 

As defined in section 1.1 Background, Industry Foundation Classes, or IFC is a neutral 

standard that can be used across a wide range of platforms. According to buildingSMART 

International [10], IFC can be used to: 

• Describe how a facility or installation is used, constructed, and operated. 

• Define physical components (buildings, manufactured products, mechanical and 

electrical systems). 

• Define abstract models (structural analysis, energy analysis, cost breakdowns, work 

schedules, and more). 

• Exchange information between different parties in a project (architects, owners, 

contractors, etc.). 

• Archive project information (design, procurement, construction phases, and "as-

built" for preservation and operations). 

The IFC data can be encoded in various formats, such as XML, JSON, and STEP, and 

transmitted over web services, imported/exported in files, or managed in centralized or 

linked databases [10]. Software vendors of BIM tools (for design, simulation, analysis, and 

viewing) provide interfaces to end users to export, import, and transmit data in some IFC 

format [10]. Sensor data can be imported to IFC via the IfcSensor class, which supports 

the following predefined sensor types: conductance, contact, fire, flow, gas, heat, 

humidity, ion concentration, level, light, moisture, movement, PH, pressure, radiation, 

radioactivity, smoke, sound, temperature, wind, CO2, frost [18]. There is no kinematic 

IfcSensor type, so to work with sensors that involve motion measurements it is necessary 

to create a new type from a pre-existing one [19]. 

For manufacturing, industrial, and other purposes alike, several companies offer their 

solution in commercial software for digital twins, such as IBM [20], GE [21], AVEVA 

[22], TCS [23], Autodesk TANDEM [24], and Ericsson [25]. For civil engineering, 

Bentley [26] has the iTwin platform for digital twins. Like Autodesk Forge Viewer [27], 

the iTwin Viewer is a customizable viewer that offers basic tools for viewing a civil 

structure digital twin, which can be further improved with JavaScript iTwin extensions 

[28]. Still in civil engineering, some other projects with purposes which align with the 

objectives of this research are: 

(i) IM-SAFE [29]: the project aims at supporting the European Commission and 

the European Committee for Standardization in preparing new standards in 
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monitoring, maintenance and safety of transport infrastructure, and promoting 

the adoption of these new standards. IM-SAFE seeks the improvement of the 

rules in the structural design codes by approximating standard and practice in 

monitoring of structures [29]. 

(ii) IoT BRIDGE [30]: is a platform for bridge monitoring and health condition 

assessment. The provided services include instrumentation of sensors on the 

bridge, continuous measuring, data transfer to cloud for analytics, visualization, 

and decision support. The data streamed are fed into algorithms to 

automatically assess the condition of the bridge. The platform includes user 

applications, and the data is in open formats so the results can be exported to 

external applications for asset management and maintenance. 

(iii) SeeBridge [31], [32]: Semantic Enrichment Engine for Bridges, or SeeBridge 

is a platform for survey and assessment of bridges. Remote sensing technologies 

are used to capture the state of a bridge in point cloud data, then a bridge 

model is automatically generated by a point cloud processing system, which 

includes a damage measurement tool for the identified defects. The process 

covers data acquisition, 3D geometry reconstruction, semantic enrichment to 

BIM models and defect identification and assessment. In Sacks et al. [32], the 

formal specification of the overall system concept is presented in an 

Information Delivery Manual and a Model View Definition. 

(iv) PhDC4D [33]: is a Digital Twin platform specialized in maintenance 

management of critical assets such as ports, ships, tank farms, smart cities, fixed 

platforms and plants. PhDC4D automates and integrates data from human 

inspections and from drones, robots and sensors into the same digital twin [33]. 

Futai et al. [34] developed a framework for a FE-based DT for predictive 

maintenance of bridges using PhDC4D. The features of the DT include 3D 

model, material properties, drawings, spreadsheets, documents, inspection 

reports, sensor data, automated tools for assessment, and machine learning 

algorithms to model degradation. Cloud Computing is used to store and 

manage data in real-time. The authors state that the monitoring system was 

employed to a case study bridge to support its restoration, which proved the 

potential benefits of a cloud computing monitoring system, and that the digital 

model associating these DT features is currently under development [34].  

In addition, in Berrocal et al. [35] results from the ongoing project named SensIT are 

presented, which aims at developing a digital twin concept to improve asset management 

of RC structures. The authors presented a case study of a RC beam, in which FOS data 

are analyzed and integrated into a web application to be visualized in a 3D geometry 

model of the beam [35]. Pregnolato et al. [16] developed a generic workflow process for 

developing a DT for existing assets, including a proof-of-concept case study of a 
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suspension bridge in the UK. The “real-virtual” link in this case study was obtained 

through a Python based linking software [16]. 

As opposed to a CDE for different data formats, a “one-stop-shop” software solution that 

does not have a programmable interface might face additional challenges. For instance, 

dependency on one software that needs updating and learning (unlike, for example, Revit 

for BIM that many offices might already know), competing with specialized software that 

might perform better, and the need to replace current systems entirely for it to be 

implemented.  

Cloud computational service platforms, like Azure [36] and AWS [37], can be associated 

with different programs in a CDE to connect BIM models and sensor data. Business 

intelligence (BI) platforms, like PowerBI [38], take data from different sources to create 

interactive reports; platforms such as Vcad [39] connect BI data with BIM. COBie, or 

Construction-Operations Building Information Exchange is a non-proprietary data 

format for the exchange of information between the construction and operations phase 

[40], [41]. Key information (drawings, bills of quantities and specifications) is pulled into 

one format and shared between the construction team at defined stages in a project [40], 

[41]. For this study, Forge [12] was chosen to be the CDE for the proposed digital twin 

for being considered the most complete approach, since it has programmable interface 

and extensions, and is compatible with cloud services, BIM and IFC. More details about 

Forge are given in section 4.3 Common Data Environment. 
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3. Experimental program 

3.1 Design of experiment and purpose 

The primary objective of the FOS-beam experimental program was to provide SHM 

data from sensors to be included in the CDE for the pilot digital twin. Two reinforced 

concrete (RC) beam specimens were instrumented with FOS and SG and subjected to a 

three-point bending test. During the test, a DIC system was set in place to perform strain 

measurements through image acquisition. Secondary objectives of the FOS-beam 

program included: 

i. Establishing an opportunity to practice working with a FOS system, including 

mechanically bonding fibers before testing and analyzing outcome data afterwards. 

ii. Evaluating two different positions to place the optic sensors: inside a groove carved 

in the reinforcement bar, and in the concrete immediately outside the rebars. This 

analysis found the measurements from the FOS inside the groove to be more 

reliable; the discussion and the conclusions drawn from this analysis can be found 

in the additional publication “Crack monitoring by fiber optics and image correlation: a 

pilot study”, published in the IABSE Symposium 2022. 

iii. Establishing an opportunity to practice working with a DIC system, including 

testing speckle pattern and surface preparation techniques, and data analysis. 

iv. Providing geometrical data and information for a BIM model for the proposed 

CDE. 

v. Providing experimental data to calibrate a Finite Element model, that can be later 

employed for prediction of future behavior in similar structures. 

vi. Providing experimental data for an analysis of correlation between surface 

deformation, measured by DIC, and reinforcement strain, measured by FOS. The 

results from this analysis are presented in the third appended paper. 

This experiment design was chosen due to its simple yet realistic representation of the 

behavior of RC structures, and to the available studies in the literature attesting for the 

accuracy of FOS and DIC in RC beams under three-point bending, such as [42]–[46]. 

The placement of the FOS in the rebars was chosen because bonding the fibers to the 

reinforcement can reduce the risk of fiber rupture, as well as idle readings caused by 

exceeding the strain range of the sensor, since no strain discontinuities occur in the 

reinforcement [42]. Moreover, by embedding the sensors in a groove along a rib-free 

side of the rebar, the bond properties should be minimally distorted [46]. 

The FOS-beam program will also serve as a pilot study for the work with FOS, DIC and 

digital models that will be applied to the “Trough Bridges” experimental program, 

presented in section 7. Future research. In this section, the experimental program, digital 
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models, and common data environment for the FOS-beam are presented. More details 

and data analysis from the tests can be found in the third appended paper. The author 

actively contributed to this project in different stages of planning, instrumentation, 

casting, execution of the tests, data analysis and digital modelling. 

3.2 Test setup 

The FOS-beam experimental program was carried out to evaluate the crack propagation 

of a reinforced concrete beam tested under a three-point bending scheme. Two beam 

specimens were tested to failure, instrumented with FOS, SG, and DIC system. The 

reinforcement consisted of two 𝜙16 mm rebars, one in tension and one in compression, 

and 8 𝜙8 mm stirrups every 80mm. Three cubes were also cast from the same batch of 

concrete and subjected to a compression test to obtain material properties. Figure 6 

presents schematic drawings of the test set up for the beam specimens and cubes, and the 

beam cross section with the positions of the FOS. 

Detailed accounts of the materials and methods of this experimental program are 

described in the third appended paper. The correlation between surface deformation, 

measured by DIC, and reinforcement strain, measured by FOS, obtained by numerical 

analysis through Machine Learning algorithms and Finite Element modelling are the 

object of study of this paper.  

Figure 7 presents a picture of the FOS-beam test, displaying the beam under the machine 

that applies the controlled displacement, and the DIC system tripod directed at the beam 

surface, which was prepared with white paint coating and a black speckle pattern. It is 

also possible to see the FOS outside the beam, where it does a loop out of the first rebar 

to return to the second.  

The goals of this program were to serve as a pilot test for the work with fiber optic 

sensors, and to provide test data to be incorporated in the digital twin methodology. The 

complete data output generated from the experimental program was: 

• Strain in the rebars in compression and tension measured by FOS in two different 

positions: in a groove carved inside the reinforcement bars, and in the concrete 

adjacent to it. 

• Strain in the mid-point of the beam, in compression and in tension, measured by 

Strain Gauges. 

• Data extracted from the DIC system, including strain and crack propagation in 

the surface of the beams.  

• Evolution of force and vertical displacement in time from the load-applying 

machine. 
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Figure 6: Test set up for the beam specimens (left), cubes (center) and beam cross section with positions 

of the fiber optic sensors (right). 

 

 

Figure 7: Picture of FOS-beam test, displaying the beam  
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4. Digital Twin approach 

4.1 BIM 

A BIM model of the FOS-beam was created using Revit from the design plans and 

experimental data. Revit is a BIM software from Autodesk for parametric 3D modelling 

of shapes, structures, and systems, which also enables a unified project environment for 

multidisciplinary teams. The many advantages of using BIM have already been well 

established in the literature and in the industry, so a few points worth highlighting as to 

why Revit is particularly useful for the desired CDE are: Revit allows detailed graphic 

representation of geometry, including reinforcements, and the inclusion of material 

information, costs, and schedules. With the multidisciplinary environment, the model 

and its associated information can be shared and edited between different stakeholders. 

Revit imports and exports models to different formats, including IFC, and allows the 

extension of its core functionality through Revit’s Application Programming Interface 

(API) [47]. 

Besides geometry, the BIM model is a tri-dimensional digital representation of the FOS-

beam that can include additional information about manufacturer, cost, and material 

properties. For concrete, some of the available material properties are compression, shear, 

and tensile strength, Young’s modulus, Poisson’s ratio, shear modulus, density, and 

thermal properties. For the rebar steel, yield strength is also available, besides geometric 

details such as hook lengths, end treatments (none, threaded or welded) and bending 

radius. Schedule and material takeoff spreadsheets can also be generated, and different 

construction phases can be represented in Revit. Figure 8 presents a rendered 3D view, 

a cross section and an elevation obtained from Revit for the FOS-beam model.  

 

Figure 8: Rendering (top, left), cross section (top, right) and elevation (bottom) of FOS-beam from 
Revit. 
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4.2 Finite Element 

A tri-dimensional finite element model of the FOS-beam was also created. GiD was used 

for geometry design and pre-processing, and Atena Studio v5 [48] was used for processing 

and post-processing analysis. The model properties were included according to those 

obtained experimentally, as well as the interval data. The induced displacement was 

applied with a rate of 0,01mm per step, as the experiment had 0,01mm per second. Figure 

9 presents the deformed model with the cracks upon failure, and the reinforcement strain. 

The failure mode numerically obtained was through shear, similar to what was identified 

in the experiment. Figure 10 presents the results from the FE model displaying crack 

width and a picture of the FOS-beam after the test, with emphasis on the shear cracks on 

both. Details on the development of the FE model, such as elements used, meshing and 

constitutive models, as well as ML algorithms to evaluate correlation between surface 

deformation and reinforcement strain can be found in the third appended paper.  

 

Figure 9: Crack width results from FE model (left) and picture of the tested beam post failure, showing 
the main shear crack (right). 

 

 

Figure 10: Crack width results from FE model (left) and picture of the tested beam post failure, 
showing the main shear crack (right). 
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4.3 Common Data Environment 

The first step towards achieving the proposed digital twin for asset management is the 

creation a common data environment for structural health monitoring data and BIM. 

First, a BIM model of the FOS-Beam was created using Autodesk Revit [11]. Then, a 

webapp for visualizing these models was created using Autodesk Forge [12]. Finally, the 

developed webapp allows sensor data entry to be integrated with BIM through the Data 

Visualization Extension [49]. This session describes the development of the digital 

models, webapp and the expected results for the integration of SHM data in the CDE. 

4.3.1 Webapp Viewer 

Forge is a developer platform from Autodesk that allows access to design and engineering 

data in the cloud [12]. Applications created using Forge APIs can perform automation of 

processes, connection of teams and workflows, or data visualization [12]. One of the API 

solutions available in the Forge platform is the Autodesk Forge Viewer, a WebGL-based, 

client-side JavaScript library for 3D and 2D model rendering [50]. Web Graphics Library, 

or WebGL, is a platform-independent way to create interactive graphical applications on 

the web [51], and a JavaScript library consists of pre-written code to facilitate the 

development of JavaScript-based applications. Through the Viewer, design models and 

documents can be displayed, shared, and interacted with on a web page [27].  

Eclipse IDE for Enterprise Java and Web Developers [52] was used to handle the code 

for the webapp created with the Viewer, which was then run using Apache Tomcat v.09 

[53] server at localhost. The basic user interface (UI) of the webapp consists of a left panel 

with a list of buckets and objects, and a 3D or 2D viewer on the right. A toolbar for 

visualizing and interacting with the models is also part of the basic skeleton of the webapp, 

including actions such as orbit, pan, zoom, measure, section analysis, document browser, 

explode model, and properties.  

The Viewer API can also be used to customize the appearance of the UI and the 

contextual behavior of the webapp, as seen in Figure 11. Extensions can be added to the 

basic code of the Viewer to improve functionalities of the webapp. The Developers 

Guide for Forge suggests a library in GitHub [54] which contain preexisting code for 

some extensions, or extensions can be created from scratch by more experienced 

developers. From the 8 extensions available at the library [54], some worth highlighting 

are: 

1. Camera Rotation: displays the model rotating at a fixed speed, which can be useful 

for demonstration purposes. 

2. Google Maps Locator: displays the geographic location of the model. 

3. Icon Markups: presents icon marks for different temperature information. 

4. XLS Extension: transposes the data from the Revit file to an Excel format. 
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The FOS-beam BIM model was uploaded to the webapp, and a PDF design plan was 

also uploaded to exemplify other types of documents that can be included as layers to the 

model. Figure 12 presents the webapp created displaying the FOS-beam model and PDF 

design. 

 

Figure 11: Example of customized Viewer UI [55]. 

 

Figure 12: Autodesk Forge Viewer webapp displaying the FOS-beam model (top) and PDF project 
(bottom). 

4.3.2 Data Visualization Extension 

The webapp created with Autodesk Forge Viewer serves as a good foundation for the 

proposed digital twin, since it provides: 
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• A neutral platform that reads and connects BIM models with other different file 

formats. 

• A programable interface that can be customized in terms of both appearance and 

functionalities, including the addition of extensions. 

• A platform that can be accessed online and interacted with by different 

stakeholders, in different devices (computer, cellphone, tablets for example). 

However, for the Viewer webapp to be considered a functioning Digital Twin, some 

form of data flow between physical and digital entities is still required. To achieve that, 

the next step in this research will be to link SHM data from the FOS-beam with the BIM 

model through the Data Visualization Extension in the created Viewer webapp.  

Within the Autodesk Forge solutions, the Data Visualization Extension allows the 

visualization of data from sensors, and interaction with sprites and surface shading in the 

context of 3D design models [49]. Heatmaps and sensor data are incorporated into a 

Digital Twin solution, thus empowering business decisions guided by visual insights. [49]. 

Design data and business data are combined and visualized together in the webapp 

platform to form the digital twin, as illustrated by Figure 13.  

For the design data, 3D geometry and BIM data can be incorporated through Revit 

models, a Navisworks [56] model can complement with revision and 4D analysis tools, 

and IFC files can be included for other types of models. The business data comprises 

sensor data, from Internet of Things (IoT) devices and other data sources, made available 

in the cloud through, for example, Amazon Web Services [57] and Azure [36]. The data 

is finally combined in the Forge Viewer webapp, where sensor data is visualized with the 

BIM model, along with other elements that can be added, such as graphs, dashboards, 

and a timeline. The application for the Data Visualization Extension is mostly developed 

using JavaScript language. 

Autodesk provides an example of a digital twin created through the Forge platform and 

Data Visualization Extension, presented in Figure 14 and Figure 15. Figure 14 shows the 

main window of the Digital Twin in the webapp, which contains a left panel with the 

visualization of the 3D BIM model, including the Viewer toolbar, a timeline, and a right 

panel with a list of sensors separated by level. The right panel is interactive, and by 

clicking on one of the levels, the sensor graphs of that level are displayed, as shown in 

Figure 15. The sprites are also interactive, and by hovering the mouse cursor over them 

the sensor readings are displayed (Figure 15). 
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Figure 13: Diagram of how the Digital Twin is created using Forge and the Data Visualization 
Extension. Adapted from [49]. 

 

Figure 14: Main window of the Digital Twin webapp on Autodesk Forge [58]. 

 

Figure 15: Zooming in the model, hoovering the mouse cursor over a sprite displays sensor readings on 
the Digital Twin webapp on Autodesk Forge [58].  
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5. Discussion 

A Digital Twin consists of a digital model that represents the geometry and behavior of 

a physical entity, to which it is connected through a data flow. The goal at the end of 

this research project is to develop an asset management system of civil structures through 

BIM and DT. The purpose of DT in asset management is to provide an integrated 

platform for life cycle management of a structure, efficiently connecting information 

about construction, geometry and design, materials, current condition, and prediction of 

future behavior. In this section, the progress of the research towards the development of 

the system is discussed in terms of technology readiness levels. 

Technology readiness level (TRL) scales were developed by the U.S. Department of 

Defense and NASA in the 1980s. Since then, TRL definitions have been applied and 

tailored to a variety of industries beyond aerospace [59]. However, the basic idea 

associated with these other applications remains the same as in the scale proposed by 

Mankin [60] in 1995, credited with the dissemination of the concept [59]. According to 

Mankin [60], TRL are a systematic measurement system that supports the assessment of 

the maturity of a particular technology and the comparison of maturity between different 

types of technology. Figure 16 presents the TRL definitions for the proposed system, 

based on the definitions proposed by Mankin [60]. 

 

Figure 16. Definition of Technology Readiness Levels (TRL) for the proposed Digital Twin asset 

management system. Adapted from [60]. 

Initial research: basic principles are observed and reported, scientific research 
begins to be translated into applied research and development (R&D).

Formulation of concept and applications: practical applications are defined, but 
still speculative, without experimental proof.

Concept validation: active R&D is initiated, including analytical predictions and 
laboratory-based studies to validate them (proof-of-concept).

Experimental pilot: validation in laboratory, potential system applications 
consistent with eventual system requirements, but still relatively low-fidelity.

Demonstration pilot: the fidelity of the tested component increases significantly, 
the total applications are tested in a simulated or somewhat realistic environment.

Prototype: demonstration of an actual system application, or a similar one using the 
same technologies. 

Field test: system prototype demonstration in its environment.

System qualified: system completed and qualified through test and demonstration 
- this is the end level of true system development for most technology elements.

Implementation: system proven through successful operations, end of last fixes to 
address problems found following operation, system ready for commercialization.
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At this point in the research, TRL 3 has been achieved. TRL 1 consisted of the literature 

review, published in the appended Paper I. The definition of the methodology presented 

in section 1.3 Scientific approach, as well as the framework proposed in the appended 

Paper II, represent TRL 2. TRL 3 was achieved through FE modelling, planning and 

execution of the FOS-beam experimental program, seen in section 3.Experimental 

program and in the appended Paper III. 

For TRL 4, the FOS-beam tests will represent the validation in laboratory environment. 

The requirements of potential system applications will be achieved once the Data 

Visualization Extension is added to the webapp created in Forge Viewer, and sensor data 

from the FOS-beam can be connected to the BIM model. TRL 4 already represents a 

Digital Twin but is still an experimental pilot with low fidelity compared to the eventual 

asset management system because a beam is much simpler than a bridge or other civil 

structure. This is the immediate next step in this study. 

In TRL 5, the progress in connecting sensor data to the BIM model in the webapp will 

be applied to the “Trough Bridges” experimental program, presented in section 7. Future 

research. Therefore, TRL 5 represents a Digital Twin model of the “Trough Bridges”. 

The application in a bridge structure in laboratory consists of a significant improvement 

in fidelity of the system in a simulated environment. The trough bridges tests are planned 

to take place in 2023. 

For demonstration of an actual system application in TRL 6, additional aspects of asset 

management of civil structures will be included to the Digital Twin system. Details are 

presented in section 7. Future research. The achievement of this level will follow the 

work in TRL 5 in 2023. 

In TRL 7, the DT system prototype is demonstrated in a case study of an existing civil 

structure. The achievement of TRL 7 withing the time frame of this research project is 

still under evaluation due to time and logistic constraints. 

In TRL 8, the results and improvements from the Trough Bridge tests, representing asset 

management of new structures, and, if possible, the case study representing the needs of 

existing structures, are implemented. At the conclusion of TRL 8, the asset management 

system through BIM and digital twins is completed and qualified. 

Lastly, TRL 9 will take place upon the need of improving the proposed DT system to 

be implemented or commercialized for real structures. This step would most likely occur 

after the conclusion of this research project.  
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6. Conclusions 

This section addresses the hypothesis, objectives and research questions formulated in the 

Introduction, based on the literature review and on results achieved thus far in the 

research project. 

Hypothesis:  

Digital Twins provide a more efficient and effective alternative to current practices in 

asset management of structures. 

In sum, managing a structure consists of ensuring its safe operation by periodically 

evaluating its condition and planning for necessary interventions. Therefore, the 

efficiency of this process is highly dependent on structural inspection and analysis of future 

behavior. The literature shows that there has been significant progress in non-destructive 

testing and automated scanning technology to improve structural inspection, and in 

digital modelling to analyze structural behavior. However, the full potential of these 

technologies, particularly post-construction, is still under-explored largely due to the 

difficulty in communication between different platforms. A common data environment 

is an alternative that can support different data formats and information exchange. A 

digital twin created in a common data environment provides a common platform for 

these technologies to interact, thus allowing them to be explored to their full potential 

and improving the efficiency of the life cycle management. 

Objectives:  

As for the objectives, the results can be identified in the appended papers and in different 

sections of this thesis. The results from objective (i), related to the literature review, are 

presented in the appended Paper I and Paper IV, and in section 2. Literature review. For 

objective (ii), related to the experimental program, the results can be seen in the appended 

Paper III, and in section 3. Experimental program. Lastly, the results from objective (iii), 

related to the development of the methodology for the proposed digital twin for asset 

management, can be seen in the appended Paper II, and in sections 1.3 Scientific 

approach and 4.3 Common Data Environment. 

Research questions: 

(i) What are the current challenges in asset management of structures identified 

in the literature? 

Asset management for civil structures is highly dependent on inspection data, since this 

is the information used to create the panorama of the structure’s current condition and, 

consequently, its maintenance needs. For bridge structures, the main challenges in 

structural inspection identified in the literature are related to inefficiency, inaccuracy, 

dependency on inspector’s personal knowledge and experience, and information 
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exchange between platforms and stakeholders in the project. From the literature review 

it was also identified that current bridge management systems lack a tri-dimensional 

geometric representation of the structure, such as a BIM model, integrated and connected 

to the system to facilitate inspection and management. Other gaps identified in the 

literature include allowing remote access to the system and its data, adopting automated 

inspection procedures and NDT that can be linked to a BIM model, Life Cycle Cost 

Analysis (LCCA) and prediction of future deterioration through digital modelling. 

(ii) What is the current maturity level of Digital Twins in the construction 

industry? 

The literature shows that the construction industry is still behind other industries, such 

as aerospace and manufacturing, in terms of maturity of digital twins. Moreover, within 

the construction industry digital twins for buildings are more advanced than for civil 

structures, which present more challenges in terms of access and type of data required 

from sensor instrumentation. While aerospace and manufacturing are advanced enough 

to have functional digital twins, or at least a clear vision of concepts, benefits and future 

plans, there is still not a consensus on what constitutes a digital twin in the construction 

industry. There have been a few commercial and research initiatives well advanced 

towards DT for asset management of civil structures, as cited in section 2. Literature 

review. However, there is often misconception, mislabeling of digital models, and use of 

the term only as a buzzword in the digital twins presented within the construction 

industry. The aspects identified as most commonly left out of these mislabeled digital 

twins are data flow between physical and digital, prediction of future behavior and life 

cycle management. 
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7. Future research 

The tasks planned for future research in this project are divided into the following three 

categories, presented in this section: digital modelling and programming, research, and 

experimental work.  

i. Digital modelling and programming 

To obtain a functioning digital twin, the software work in the common data environment 

needs to be completed. The Data Visualization Extension will be added to the created 

Webapp Viewer to allow sensor data to be visualized and integrated with the BIM model 

in the CDE. To include the extension, it requires going through its comprehensive 

JavaScript library. Besides the extension, the Webapp interface can also be customized. 

Then, prediction of future behavior will be incorporated through FE modelling.  

ii. Research 

In the appended Paper IV, a review of current bridge management systems is presented, 

including an analysis on current practices, identified gaps and potential improvements. 

Once the software work is concluded, the continuation of this research will focus on 

including asset management aspects to the proposed digital twin. This will include a 

deeper analysis into the specific needs of the asset owners, with their direct input in 

potential improvements of current systems. Also, a specific analysis of Sweden’s system, 

BaTMan (Bridge and Tunnel Management system), is planned along with a potential 

expansion of the analysis to civil structures besides bridges.  

Within asset management of civil structures, relevant aspects such as LCCA, 

environmental and climate impact investigations will be explored. Future discussions in 

this research include how current management systems can adapt or include the new 

technology, how the new technology works differently for new and existing civil 

structures, and the technology readiness level the system will be finalized. 

iii. Experimental work: Trough Bridges 

An experimental case study that will use the FOS-beam, as a pilot study, is programmed 

for 2023, named “Trough Bridges”. The main application of this project to this study 

will be the use of extracted SHM data for a digital twin model towards asset management. 

The author actively contributed to this project in planning, casting of specimens to 

evaluate material behavior, instrumentation, and digital modelling. 

The experimental program for the “Trough Bridges” case study consists in a series of 

laboratory tests that will be performed in two real scale trough bridges, named TB1 and 

TB2, cast at Luleå University of Technology (LTU). The main goal of the project is to 

develop a procedure for evaluating the real structural capacity of bridges. The premise is 

that a significant number of bridges worldwide are approaching the end of their design 
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life, and how a reliable evaluation of their true structural capacity might extend their life 

spans. This evaluation can avoid replacing these bridges entirely and prolonging the 

expected technical life span, which is a more sustainable solution from both 

environmental and financial aspects. To achieve this, a comprehensive laboratory test plan 

includes: 

• Serviceability load testing: capacity of the bridges defined based on analytical 

calculations and FE models, which will be calibrated after the tests. 

• Fatigue testing: real scale and scaled down model tests to predict fatigue damage 

more accurately, and investigation of how fatigue decreases the bridge’s lifespan. 

• Bridge scanning: development of a 3D model based on photogrammetry 

techniques, including damage information retrieved from point cloud data. 

• High temperature testing: evaluation of the feasibility of the tests in the laboratory 

(definition of the event, position of fire source, exposure time and safety). 

• Digital twin: SHM data from tests connected to digital models via Viewer webapp 

and Data Visualization extension to create a digital twin of the Trough Bridge. 

• Strengthening: definition of strengthening technique that causes the least traffic 

disturbance, perform tests on a strengthened damaged concrete trough bridge and 

analyze experimental results analytically and through FE modelling. 

• Reliability analysis: predict the bridge’s true capacity and likely failure modes, 

including experimental data and probabilistic models. 

Besides the laboratory tests, numerical models are also included in the Trough Bridge 

project scope. These include static and dynamic load distribution models, FE models to 

capture the structural behavior, and deterioration models to predict the structure’s 

remaining capacity. The project deploys a wide team of researchers to execute all the 

planned tests and respective digital models. The focus of this study is the use of SHM 

data to feed the Trough Bridge future digital twin. This digital twin will then be evaluated 

as a tool for asset management of structures in the larger scope of this research. 

So far, both bridges have been instrumented and cast, and modelled in BIM using Revit. 

Figure 17 presents frontal and lateral elevations of the trough bridge with its dimensions, 

and Figure 18 shows a 3D rendering of the bridge and its reinforcements from Revit. 

The total length of the bridges is 7.20m, with 3.80m of width.  

Each bridge was instrumented with eight fiber optic sensors, limited by the maximum of 

eight simultaneous channels in the data acquisition system. The fiber optic system used 

was ODiSI 6, from Luna Innovations Inc. [61], similarly to the FOS-beam program. The 

fibers were applied inside a groove carved into the rebars and bonded with an epoxy 

glue. Besides FOS, some rebars were also instrumented with strain gauges to perform 
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point strain measurements. The rebars that were instrumented with the fibers and the 

position of the strain gauges are highlighted in Figure 19. 

Both TB1 and TB2 bridges were cast outside on 03/03/2022. On 31/05/2022, after the 

curing process, TB1 was moved to the laboratory. Figure 20 shows the casting of the 

bridges, transportation of TB1 and the TB1 inside the laboratory. Twelve cylinders were 

cast from the same concrete batches and kept at the same condition as the bridges to 

obtain material properties. At the time of testing the bridges, three cylinders will be 

subjected to a compression test, three to a modulus of elasticity test and six to a fracture 

energy test.  

In this study, the Trough Bridge case study is briefly presented as experimental work 

planned within future research towards the development of a digital twin for asset 

management. The research plan for this project includes sharing the future results from 

experimental testing and digital modelling in journal and conference papers, in which 

further details on the instrumentation, properties, tests and procedures will be provided. 

 

Figure 17: Trough bridge drawings: frontal elevation (left) and lateral elevation (right). 

 

Figure 18: Renderings of Trough Bridge (left), and Trough Bridge reinforcement (right) from Revit. 
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Figure 19: Rebars instrumented with FOS (left) and position of strain gauges in these rebars (right). 

 

 

Figure 20: Casting Day for the trough bridges (left), transportation of TB1 (right, top), TB1 inside the 
laboratory (right, bottom). 
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ABSTRACT 
The need to optimize investments in bridge maintenance has created a demand for improved 
bridge management systems (BMS). Outdated practices in bridge inspection and constant 
advances in information technology have also contributed to this demand. The use of Digital 
Twins (DT), although well established in other industries, is still incipient for asset management 
and structural analysis of bridges. There is a great deal of research on Building Information 
Modelling (BIM) for bridge inspection, but its post-construction potential is still under-explored. 
This study presents a state-of-the-art review of the literature on asset management for bridges 
using digital models such as BIM and digital twins. The review was conducting using a systematic 
approach. Despite the rapid increase in research on DT and the amount of existing research on 
BIM, several gaps remain to be addressed, such as the lack of consensus about the definition of 
digital twins, which has led to wrongful categorisation of digital models as DT. The complex data 
flow and software compatibility required to develop a functional DT have hindered the 
exploitation of their full potential so far. The integration of BIM post-construction to BMS and 
existing automation technologies can also significantly improve current practices of bridge 
management. 
 
Key words: digital twins, bridges, bridge maintenance, bridge management systems, BIM, 
review. 
 
 
1. INTRODUCTION 
 
Bridge structures have long theoretical life spans. Most bridges on the national road networks of 
the European Union were built within the last 50 years, although some are much older [1]. 
Deterioration and failures have increased in the already aging bridges due to consistent growth in 
automobile traffic, environmental exposure, and internal defects such as corrosion of rebars and 
concrete degradation. In addition, the loads currently applied to many bridge structures greatly 
exceed those envisaged when they were designed [1]. National guidelines require regular bridge 
inspection and evaluation to ensure that their operation remains safe and efficient. The processes 
of managing and scheduling these evaluations, recording and handling bridge data, and making 
maintenance recommendations have become known as bridge management [2]. 
 
Asset management is defined here as the set of activities through which an organization assures 
the maintenance and optimization of costs, performance, safety, and sustainability of its assets 
throughout their life cycles. Asset management can be applied to both tangible assets (buildings, 
infrastructure, equipment) and intangible assets (financial assets, intellectual property, human 
capital), whereas facility management focuses on maintaining the services that support the 
organization’s primary business and activities. 
 
Bridge management is an essential part of long-term asset management that is applicable to all 
existing bridges, old and new [3]. The main purpose of a bridge management system (BMS) is to 
preserve the asset value of the infrastructure by optimizing costs over a bridge’s lifespan while 
ensuring user safety by offering a sufficient quality of service [1]. The expansion of physical 
infrastructure and improvements in technology have prompted authorities to seek ways of 
managing maintenance activities more efficiently [4]. In recent decades, the scope of bridge 
management has grown, and the objective of maximizing the value of maintenance spending to 
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protect investments in bridges has been added to the primary goal of protecting the safety of the 
traveling public [2, 4]. As a result, the search for more efficient management methods, the appeal 
of new technology, and efforts to reduce maintenance spending have created a demand for 
optimized BMS. 
 
Some recent developments in Information Technology (IT) have led to changes in bridge 
management, through improvements in the quality of inventory and inspection databases as well 
as the control that can be exerted over deterioration, forecasting, and management models [5]. 
The proliferation of Industry Foundation Class (IFC) alone has had a major impact on how current 
tools and methods are developed in research and development [6]. Digital technologies across the 
board are advancing at an ever-increasing pace, taking advantage of the Internet of Things (IoT) 
and Artificial Intelligence (AI) agents (data analytics, machine learning, deep learning, etc.) [6].  
 
An approach that has proven useful in many different industries involves the use of Digital Twins 
(DT). The basic idea behind the DT approach is that a digital informational construct representing 
a physical system can be created as an entity in its own right, providing a “twin” of the information 
embedded within the real physical system that is linked to the real system over its entire life cycle 
[7]. Despite extensive discussion in the literature, no consensus regarding the features and scope 
of digital twins has yet been established [8]. As a result, the term “digital twin” is often used to 
describe 3D digital models that lack the relevant data flows. Moreover, despite a growing body 
of research, the AEC/FM (Architecture, Engineering, Construction/Facility Management) sector 
still lags behind the manufacturing and aerospace sectors in terms of the maturity of development 
of digital twins [9]. 
 
This context was the main motivation for this state-of-the-art review of the literature on asset 
management for concrete bridges using digital models such as Building Information Modelling 
(BIM) models and digital twins. A great deal of research has been done on the use of BIM for 
inspecting bridges, so the discussion of BIM here focuses on synthesizing the most recent research 
and summarizing information on best practices. Digital twins, on the other hand, have been 
studied less extensively, especially in the context of asset management in the construction 
industry. This review of DT therefore focuses on summarizing the work that has been done and 
identifying gaps in the literature meriting further exploration. 
 
This review is divided into eight sections: Introduction, Methodology, Bridge Inspection, Bridge 
Information Modelling (BrIM), Digital Twins, Bridge Management Systems, Discussion, and 
Conclusion. The methodology section explains the procedures used when conducting the 
systematic review of the literature. Sections three through six present an overview of key findings 
from the literature pertaining to their subjects and link those findings to the main thread of the 
review. The material reviewed in the preceding sections is then discussed in the seventh section, 
and the conclusions and recommendations for future studies are presented in the final section. 
 
 
2. METHODOLOGY 
 
This section explains the methodology used when conducting the systematic state-of-the-art 
literature review. The process was divided into three main steps: (i) defining the search strings, 
(ii) performing searches in the selected database, and (iii) assessing the retrieved articles. The 
search strings were defined based on keywords identified in primary references retrieved during 
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a preliminary exploratory literature review. The most commonly recurring keywords in the 
primary references were divided into five subject groups; each subject group was then assigned a 
set of strings as follows:  
 

• BIM: ("BIM" OR “Building information modelling”); 
• Bridges: (“Bridge information modelling” OR “BrIM” OR “Bridge” OR “Bridges”); 
• Digital Twins: (“Digital twin” OR “Digital twins” OR “DTM”); 
• Management/inspection: (“Facilities management” OR “Facility management” OR 

“inspection” OR “monitoring”); 
• Maintenance: (“Maintenance” OR “Assessment”). 

 
16 different searches were then performed in Scopus [10], the selected database, in April of 2020. 
The search results were only limited by year; the acceptable range was set from 2010 to 2020 to 
ensure that only publications that could be considered to represent the state-of-the-art were 
retrieved. Each search used a combination of three (ten combinations), four (five combinations), 
or five (one combination) groups of strings. The string search was applied to the title, keywords, 
and abstract of each paper. The combinations and the number of results obtained for each one are 
shown in Figure 1. 
 

 
   
Figure 1 - String combinations (left) and the number of search results obtained for each one 
(right) 
 
Two of the 16 combinations (C15 and C16) were eliminated for being too broad; the remaining 
14 combinations (C1-C14) collectively provided 600 results in Scopus [10]. Some of the papers 
retrieved in this way were eliminated before assessment because the article had already been 
assessed while reviewing the results of an earlier string combination, was written in a language 
other than English, was conference review paper, or dealt with an unrelated area of research 
(medicine, psychology, etc.).  
 
Each article was then evaluated using three sequential filtration steps; the first focused on the title, 
abstract and keywords, the second on the introduction and conclusion, and the third on the entire 
paper. Articles that passed all three steps were included in the review. The main reason for 
exclusion in all three filters was low relevance of the subject of the paper to the topic of the review; 
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other reasons for rejection included lack of access to the full paper or low overall quality. An 
iterative process was applied: all publications cited in the papers that passed all three filtration 
steps were filtered in the same way and included in the review if they also passed all three filters.  
 
As shown in Figure 1, there were far more search results pertaining to bridge inspection and BIM 
than to DTs, which is a newer area of research. The five combinations that did not include the 
search string "digital twins" (C4, C8, C9, C15, C16) collectively yielded 5 785 results, with an 
average of 1 157 results per combination, whereas the eleven combinations including "digital 
twins" (C1-C3, C5-C7, C10-C14) only provided 270 results, with an average of 25 results per 
combination. It is also noteworthy that many of the papers that did include the term "digital twins" 
in their keywords or text did not actually discuss the creation of DT models. They either used the 
expression "digital twin" as a synonym for a 3D BIM or stated that the research could support the 
creation of a digital twin in the future but did not actively contribute to the existing knowledge on 
digital twins.  
 
The distribution of the selected papers based on their year of publication is indicative of the recent 
emergence of DTs as a field of study: 50% of the included papers were published between 2010 
and 2018, and the remaining 50% were published in 2019 or 2020. The articles selected using the 
methodology described above are reviewed in the following sections.  
 
 
3. BRIDGE INSPECTION 
 
The proliferation of road traffic has increased the loads faced by bridges on public roads. 
Environmental and mechanical damage, besides natural aging, result in decreasing structural 
performance of the bridges. Regular structural health assessments and maintenance interventions 
are therefore needed to ensure that the bridges continue to operate safely throughout their intended 
design life and beyond [11]. The first step in determining the current health of a bridge and 
planning for maintenance is performing inspections. Routine inspections are periodic quality 
assessment procedures that are usually scheduled during a bridge's service life to evaluate its 
health [11, 13]. The frequency at which inspections are scheduled can vary within a country's 
BMS. Usually there is one principal and more detailed inspection every 3-6 years, one annual or 
semi-annual follow-up inspection, and more regular superficial routine inspections. 
 
Although the implementation of inspection procedures varies between countries, there are some 
common basic principles [13]. Current bridge inspection procedures are mostly based on intensive 
visual investigations and field measurements performed manually by bridge inspectors [14]. 
During an inspection, the inspector examines each element of the bridge, searching for visible 
damage. Some non-destructive testing may also be performed to complement the visual 
inspection. Concrete spalling, cracks, and reinforcement corrosion are the most frequently 
identified types of damage in reinforced concrete bridges, aside from equipment-related defects 
(e.g., defects in bearings or expansion joints) [13]. The measurements and observations obtained 
during the inspection are then documented in the form of field inspection notes, freehand sketches, 
and photographs [11, 14]. 
 
Unfortunately, these procedures present several challenges that make manual inspections time-
consuming and inefficient. These challenges may include difficulty in accessing the bridge (due 
to its large dimensions and/or environmental and traffic conditions), dependence on individual 
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inspectors’ knowledge of the bridge’s structural behaviour, and transferring information between 
inspection periods. Consequently, there is a need for new infrastructure inspection and monitoring 
techniques that reduce disruption while increasing the efficiency of data gathering and the 
reliability of the acquired data [14]. 
 
Approaches based on substituting human visual inspections with automated and systematic 3D 
point cloud assessments are currently being studied intensively [13]. Much recent research has 
focused on combining image acquisition techniques with damage detection and feature extraction 
methods to create automated bridge inspection systems [13]. Figure 2 shows some of the various 
technologies that have been used for this purpose, which are discussed in more detail below. 
 

 
 
Figure 2 - Technologies used to enhance bridge monitoring and inspections in recently published 
studies (FOS: Fibre Optic Sensors; GPR: Ground Penetrating Radar; IR: Infrared; UAV: 
Unmanned Aircraft Vehicle) [11-30]. 
 
The evolution of monitoring technology has significantly improved the efficiency of structural 
health assessment of bridges. Inspections and data collection processes have been automated, 
leading to significant increases in the accuracy and quality of the inspection data. Technologies 
used in these automated processes include fibre optic sensors [15, 16], UAV [11, 17, 18], laser 
scanning [14, 18, 19, 20, 21, 22, 23, 24, 25], photogrammetry [11, 13, 14, 19, 20, 21, 23, 26, 27], 
and ground penetrating radar [27, 28, 29, 30]. Notable publications in this area are summarized 
below. 
 
Popescu et al. [14] and Riveiro et al. [19] compared the performance of photogrammetry and laser 
scanning for bridge inspections; Popescu et al. [14] also included infrared (IR) scanning in their 
comparison. Their results showed that the two methods achieved similar final accuracies and have 
great potential to facilitate the 3D reconstruction of bridges. However, laser scanning was found 
to be more efficient because of its higher data acquisition rate and automated post-processing. The 
authors found that the main advantage of the photogrammetry technique stemmed from its lower 
equipment cost. 
 
Riveiro et al. [19] developed an algorithm using MATLAB [31] to automate the measurement of 
minimum vertical under-clearance during bridge inspections. McGuire et al. [32] developed a 
method to link and analyse data related to bridge inspection, evaluation, and management using a 
custom Microsoft Excel [33] tool. Huthwohl et al. [34] used Industry Foundation Classes (IFC) 
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to categorize inspection information on reinforced concrete bridges and to standardize its storage 
in a format suitable for sharing and comparison by different users. Abu Dabous et al. [28] used 
cloud-based solutions to sync BIM of bridges so that they could be accessed from tablet computers 
on-site. Omer et al. [12] used Light Detection and Ranging (LiDAR) to digitize bridges so that 
they could later be inspected in a virtual reality (VR) environment.  
 
Morgenthal et al. [11] and Xu & Turkan [17] proposed bridge inspection methodologies based on 
camera-equipped Unmanned Aerial Vehicles/Systems (UAV/UAS). Morgenthal et al. [11] 
generated flight paths automatically from a basic 3D model and used photogrammetry- and 
machine learning-based methods to compute automatically geometries and typical damage 
patterns. Xu & Turkan [17] used computer vision algorithms to collect and process inspection 
data, storing and managing all of the related inspection information in a Bridge Information Model 
(BrIM).  
 
Sacks et al. [20] proposed an integrated bridge inspection system called SeeBridge to upgrade the 
traditional bridge inspection process by producing semantically rich BIM of the inspected bridges. 
The system uses remote sensing techniques for data collection, software for automated 
compilation of the remote sensing data, a semantic enrichment engine for converting the 3D model 
into a semantically rich BIM, and a damage detection tool. Within the system, IFC are used to 
represent bridge elements, their properties, and the relationships between them. 
 
 
4. BrIM 
 
Building Information Modelling (BIM) for bridges is commonly referred to as Bridge Information 
Modelling, or BrIM. BrIM is a novel approach that can be used to manage the whole life cycle of 
a bridge including its fabrication, construction, operation, inspection, and maintenance [23]. Data 
gathered using the inspection technologies discussed in the preceding section can be used to 
generate accurate digital models of bridges using BIM [13, 17, 20, 28, 32, 34]. These BIM can 
then be used for predictive purposes, for example to predict the future decay of the structure using 
Finite Element (FE) methods [29]. This is essential for the creation of smart BMS because 
accurate modelling of the current situation and prediction of future problems are key elements in 
a digital twin model. 
 
In the case of new bridge structures, the BrIM can be created during bridge’s design phase, before 
its construction. This allows full exploitation of the potential benefits of life-cycle management. 
If the model is coupled to a structural health monitoring (SHM) system, the sensor data for the 
bridge can be analysed directly with the model, improving visualization and creating a shared 
environment that facilitates long-term management [15, 21, 35]. 
 
However, because bridges have long life spans, BrIM is often applied to historical bridges [23] 
[18, 24, 25, 27]. BIM for heritage or historical structures is often referred to as H-BIM. The aim 
when modelling such a bridge is to create a digital model for recording information that will allow 
the bridge’s cultural significance to be preserved while ensuring its safe operation and providing 
a virtual tool that can be used to help define effective restoration strategies [18]. The main 
difficulty in this reverse engineering process is that these heritage bridges often have overly 
complex geometries and lack detailed formal design documents, which causes challenges when 
modelling or capturing geometric data on such structures [18]. 
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It should be noted that the modelling of new bridges is also often challenging. A characteristic 
problem presented by new bridges is that they often have variable curvature and complex cross 
sections [23]. While commercial BIM software is capable of creating 3D bridge models with 
highly accurate geometry, there are only a few families of dedicated libraries for the modelling of 
complex civil structures such as bridges [13, 23, 25]. The lack of existing object libraries may 
thus necessitate the development of new algorithms and specific families to represent properly the 
different structural elements of the bridge [23]. 
 
Several solutions have been proposed in the literature to tackle the challenges of accurate 
representation within BIM and interoperability between platforms. In most of the studies included 
in this review, the commercial software package Autodesk Revit [36] was the tool of choice for 
generating BIM [18, 23, 24, 25] because it can be tailored and enhanced using its application 
programming interface (API) [32]. It also offers an inter-operable IFC platform that enables the 
exchange of data between non-native file types [32]. IFC is a neutral format for exchanging digital 
building models, and it is hoped that the use of IFC as a standard BIM file format will eliminate 
or greatly reduce interoperability issues [13]. In addition to IFC, MATLAB [31] and other 
programming languages have been used to create tailored interoperability solutions [37]. 
 
 
5. DIGITAL TWINS 
 
The first definition of the concept now known as the Digital Twin was proposed by Michael 
Grieves in a presentation in 2002 [7,38].  Although the context was related to product life-cycle 
management, it contained all the elements of the Digital Twin concept: a real space, a virtual 
space, and a link supporting data flow between the two [7]. The premise underpinning the model 
was that each system consisted of a physical system, a virtual system containing all available 
information on the physical system, and a mechanism for mirroring (or twinning) changes in the 
real and virtual spaces [7]. It also implied that the virtual and real systems should be linked 
throughout the life cycle of the physical system, from its creation and production (manufacture) 
through to its operation (sustainment/support) and disposal [7]. The Digital Twin concept was 
first used heavily in the aerospace sector; it was initially used by the National Aeronautics and 
Space Administration of the U.S.A. (NASA) to replicate the life of air vehicles [8, 39]. At that 
time, the concept was given the name DT and it was introduced as such to the aerospace world 
via NASA’s Technology Roadmaps [38]. 
 
The basic concept of the DT model is based on the idea that a digital informational model about 
a physical system can be created as an entity in its own right [7]. This digital model then functions 
as a “twin” of the information embedded within the physical system itself and is linked with that 
physical system throughout its life cycle [7]. 
 
Although much has been published on the topic, there is still little or no consensus among 
researchers and practitioners regarding the features and scopes of a digital twin [40]. Negri et al. 
[39] defined a digital twin as a virtual representation of a system that can be used in multiple 
different kinds of simulations and that is characterized by synchronization between the virtual and 
real systems based on sensed data and connected smart devices, mathematical models, and real 
time data elaboration. Kritzinger et al. [38] proposed definitions of Digital Models, Digital 
Shadows, and Digital Twins that are illustrated in Figure 3 and summarized below: 
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• Digital Model: A digital representation of an existing physical object that lacks any form 

of automated data exchange with the physical object.  
• Digital Shadow: A digital representation of a physical object with an automated one-way 

data pathway allowing information on the physical object’s state to be automatically 
transferred to the digital object.  

• Digital Twin: A digital representation of a physical object together with an automated and 
fully integrated bidirectional data pathway allowing exchange of data between the two 
objects.  

 

 
 
Figure 3 - Data flow in a Digital Model (left), a Digital Shadow (centre), and a Digital Twin 
(right). Adapted from Kritzinger et al. [38]. 
 
Lu et al. [9], Cimino et al. [8] and Khajavi et al. [41] performed literature reviews on digital twins. 
Lu et al [9]. proposed a framework for achieving smart DT-enabled asset management in the 
operations and maintenance (O&M) phases. The authors concluded that BIM still has limited 
adoption within asset management, mostly because in daily O&M management BIM is not enough 
for complex situations and comprehensive data management [9]. 
 
 
5.1 Digital Twins: bridges 
 
In accordance with the aim of this review, one of the main purposes was to identify studies that 
propose digital twins for bridge structures. However, only few articles among the ones assessed 
address digital twins for bridges, namely: Shim et al. [42], Lu & Brilakis [43] and Ye et al. [44]. 
The following subsections present a discussion on these identified studies. 
 
Shim et al. [42]  
Shim et al. [42] proposed a framework for a bridge maintenance system and applied it to a real 
bridge in a pilot study. The proposed system applies the digital twin concept by creating three 
models: (1) a physical 3D geometry model (the so-called geometric digital twin, or gDT), (2) a 
reversed 3D surface model (the reality twin model), and (3) a federated model.  
 
The gDT is based on the as-built documents of the existing bridge; it can be generated using 
parametric modelling with the aid of an open-source application-programming interface. The 
reality twin model is created via a 3D scanning procedure and contains information on the current 
state of the bridge. This model is based on a combination of photo scanning data collected using 
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an unmanned aerial vehicle (UAV) and laser scanning cloud data. Finally, the federated model is 
created by merging the gDT and reality twin models, which overlap at points bearing predefined 
marks that are placed on the real bridge before the 3D scanning procedure.  
 
The initial version of the federated model represents the status of the real bridge at the beginning 
of a maintenance task and is updated as subsequent maintenance tasks are performed. For 
automated surface damage detection, inspection data from the scanning procedure are 
automatically converted into technical damage reports and used directly to update the initial 
model. The general procedure for maintenance work is a closed loop of interactive processes 
including inspecting, monitoring, performing appropriate repair or rehabilitation work, and 
importing the resulting feedback into the database. 
 
Lu & Brilakis [43] 
Lu & Brilakis [43] proposed an automated method for generating a gDT of an existing bridge 
from four types of labelled point clusters. Only geometric representations of the four main 
components of typical RC slab and beam-slab bridges (the slab, piers, pier caps, and girders) were 
included in the models. Other semantic information including data on the materials, defects, 
additional relationships, and so on, were considered beyond the study’s scope. Lu & Brilakis [43] 
argue that all of the geometric and property information associated with the gDT should be stored 
in a platform-neutral data format (i.e., IFC) to support the use of the gDT in the construction 
industry. This format allows the categorization of inspection information and standardized storage 
in a format that facilitates sharing and comparison by different users [34]. The output of this study 
was an IFC file containing the various IfcObjects (IfcSlab, IfcBeam and IfcColumn) that comprise 
a bridge gDT. Point clusters of the four component types were created, then ground truth gDTs 
were manually generated and exported into IFC files using Autodesk Revit [36], which was 
described as one of the most advanced digital twinning software solutions [43]. In conclusion, Lu 
& Brilakis [43] reported a gain in time saving, better results in six out of ten bridges modelled and 
that human assistance is still necessary in some challenging scenarios that the current automated 
method could not handle [43]. 
 
Ye et al. [44] 
The digital twin framework developed by Ye et al. [44] combines BIM with bridge sensor data, 
FE modelling, and statistical monitoring. The framework was applied in a case study on two 
composite (steel and pre-stressed concrete) railway bridges that were instrumented with discrete 
and distributed fibre optic sensor (FOS) systems during their construction. The sensor data and 
associated bridge behaviour were visualized in a BIM environment. The FE model was created to 
investigate the performance of the bridge during construction and operation; it was validated using 
sensor data and its predictions were verified by FOS strain measurements. The resulting 
information could be used to help establish a performance baseline that will support long-term 
condition monitoring and data-informed asset management as further sensor data are collected 
throughout the bridge’s operating life [44]. The conceptual framework was developed by 
integrating both physics-based (FE modelling) and data-driven (statistical modelling) approaches.  
 
The framework was applied in a case study on experimentally tested and field monitored railway 
sleepers, with the goal of predicting their operational performance over time. The authors indicate 
that future work will include developing a working digital twin and improving the level of 
confidence in the integrated simulation model and its predictions. 
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6. BRIDGE MANAGEMENT SYSTEMS (BMS) 
 
6.1 BMS in the world 
 
National road administration authorities generally have their own management systems that are 
used to manage tunnels, culverts, ferry berths, retaining walls, pavements, and quays as well as 
bridges [45]. These systems are either developed internally by the managing organization itself 
(with or without the help of private companies), or bought off-the-shelf and modified to suit their 
needs [46]. Most such systems are only used within a single country, probably due to the 
differences in bridge management practices between countries [46]. When systems are bought 
off-the-shelf and adopted by an agency, they are usually significantly modified, creating a new 
system with a new name (e.g. Eirspan, which was developed using DANBRO as a starting point) 
[46]. 
 
Helmerich et al. [47] listed the best-known software based digital bridge management systems in 
Europe: BaTMan (Sweden), BAUT (Austria), DANBRO (Denmark), KUBA (Switzerland), SIB-
Bauwerke (Germany), and SMIS (United Kingdom). Additionally, the Federal Highway 
Administration (FHWA), American Association of State Highway and Transportation Officials 
(AASHTO), and National Cooperative Highway Research Program (NCHRP) of the United 
States sponsored a scanning study to determine how highway agencies in Europe, North America 
and South Africa handle bridge maintenance, management, and preservation [45]. The U.S. 
delegation met with bridge preservation and maintenance experts from these countries (apart from 
Austria), and with representatives from Finland (BMS: HiBris, Hanke-Siha), France (BMS: 
LAGORA), Norway (BMS: Brutus), and South Africa (BMS: STRUMAN) [45]. The investigated 
management systems evaluate the bridges’ condition through rating scales, such as a 1-4 point 
scale [45]. They also establish frequency of bridge inspection, which usually means one principal 
inspection every 5 to 6 years, some condition evaluation every 2 to 3 years and routine evaluations 
of damage [45]. 
 
The results from research projects on bridge management that have been conducted in Europe 
contributed significantly to initiating or enhancing the development of national integrated BMS 
[47]. For example, BRIME (1998-1999) was conducted with the objective of developing Bridge 
Management Systems for the European Highway authorities [47]. Likewise, Sustainable Bridges 
(2003-2007) was a consortium of 32 partners from twelve European countries for improved 
assessment tools, repair and strengthening methods. Guidelines were set to support the railway 
infrastructure departments with technical background information in the fields of inspection; 
condition, load and resistance assessment; monitoring; repair and strengthening of railway bridges 
(including NDT) [47]. 
 
In the United States, the FHWA sponsored the creation of two highway BMS, BRIDGIT and 
PONTIS, which are used to manage bridges on state and interstate highways [2]. PONTIS is the 
main bridge management system employed in the USA; it is currently managed by AASHTO and 
has been renamed BrM in reference to bridge management [2, 48]. Some other BMS currently 
used around the world are: SAMOA, APTBMS (Italy), FBMS (Finland), GBMS (Germany), 
Eirspan (Ireland), DISK (Netherlands), SMOK/SZOK (Poland), SGP (Spain), OBMS, QBMS, 
EBMS, PEI BMS, GNWT (Canada), Bridge-ASYST, MRWA and NSW (Australia), MICHI, 
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RPIBMS (Japan), KRMBS (Korea) [46, 49]; GOA (Portugal) [50]; SGO (Brazil) [51]; T-BMS 
(Taiwan) [52]. 
 
 
6.2 Modules of a BMS 
 
Each of the systems discussed in the preceding section can be used by the corresponding national 
road administration to perform a different set of management activities. The tasks can vary 
according to the specific needs and resources of each country, they can be more or less thorough 
and frequent, and prioritize different parts of the BMS scope. However, all of the BMS have 
similar scopes based primarily on inspection, structural health monitoring, and rehabilitation [3]. 
 
Inspection is the first step in the management process. During inspections, the inspectors establish 
the physical and functional condition of individual structural members and the entire bridge [53]. 
Along with the inspectors’ experience, the condition is assessed using measurement equipment 
and well-developed tools and techniques [53]. Rating criteria are then applied to determine the 
bridge’s condition, and rehabilitation procedures are implemented [3]. 
 
The management tasks are usually divided into different modules in the systems. For a BMS to 
function efficiently, the system modules must be integrated internally to minimize duplication and 
user inputs and thus achieve optimal performance [4]. The modules are usually related to 
inventory, inspection, condition analysis, and maintenance planning. The main module is the 
inventory module, which is considered the foundation from which the rest of the BMS operates 
[4]. According to Woodward et al. [1], a bridge management system capable of fulfilling the 
various objectives of the managers must be modular and incorporate modules for performing at 
least the following key tasks:   
 
1. Taking inventory of the stock; 
2. Compiling knowledge of bridge and element condition and its variation with age; 
3. Evaluating the risks incurred by users (including assessment of load carrying capacity); 
4. Managing operational restrictions and the routing of exceptional convoys; 
5. Evaluating the costs of the various maintenance strategies; 
6. Forecasting the deterioration of condition and the costs of various maintenance strategies; 
7. Assessing the socioeconomic importance of the bridge (evaluation of indirect costs); 
8. Performing optimization under budgetary constraints; 
9. Establishing maintenance priorities; 
10. Performing short- and long-term budgetary monitoring. 
 
 
6.3 Current practices in bridge management 
 
To handle the amount of information required to achieve optimal management of infrastructure, 
managing agents are using increasingly sophisticated computerized management systems to 
support their decision-making process [54]. Mirzaei et al. [54] conducted a survey of 25 bridge 
management systems that are used to manage approximately 1 million (bridges, culverts, tunnels, 
retaining structures and other objects) in 18 countries. The main results of this survey are 
presented in Table 1. The results include information on each system’s data entry and information 
access capabilities, stored information, handling of structural information, handling of cost 
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information, predictive capabilities, use of predictions and the systems’ contributions to the 
education and qualifications of their users. 
 
Table 1 - Current practices in BMS [54] 
 

No (%) Item 
Data entry and information access 

11 allow data entry through mobile computers 
12 allow access to information in the system over the internet. 

Stored information 

7 allow basic construction information to be archived in the system (the majority of systems allow 
the information to be either stored in some way or referenced). 

24 allow archiving of inspection information. 
23 allow archiving of intervention history. 

Information handled on the structure level 
24 handle condition information from inspections. 
20 handle information on load carrying capacity. 
19 handle information from inspections concerning safety. 
18 handle information from inspections concerning risk. 

Cost information 
24 can handle intervention cost information. 
6 handle inspection costs. 
11 handle traffic delay costs. 
7 handle accident costs. 
8 consider environmental costs. 

Predictive capabilities 
19 can predict deterioration; 12 systems use probabilistic methods. 
18 can predict the improvement due to future interventions; 9 use probabilistic methods. 
19 can identify optimal intervention strategies. 

Use of prediction information 
23 are used to prepare budgets. 
15 are used to set performance standards. 

 
 
7. DISCUSSION 
 
The process of creating a BMS for smart asset management of bridges using Digital Twins can be 
divided into four steps: (1) Inspection/Data acquisition, (2) BIM creation, (3) Digital Twin 
creation, and (4) Asset Management. The overview of currently operational BMS presented in 
Table 1 shows that there is room for improvement in many respects. This section analyses the 
main findings of the systematic literature review presented above. 
 
Most problems associated with current bridge inspection practices relate to time consumption, the 
limited accuracy and impracticality of manual sketches, knowledge transfer between inspection 
periods, and issues with access to certain bridge sites. Several technologies that could enhance the 
quality of inspection data while also improving the efficiency and automation of the inspection 
process have been proposed in the literature. For example, a synced BIM of the bridge can be 
accessed from the site to facilitate inspection [28], UAVs can be used to perform inspections with 
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automatically generated flight paths [11], damage detection can be automated with computer 
vision algorithms [17], and the inspections themselves can be performed using virtual reality 
bridge models [12]. As shown in Figure 2, photogrammetry and laser scanning were the most 
widely used methods in the various publications on inspection technologies included in this 
review. 
 
A very complex data flow is required to transfer information generated during bridge inspections 
to a BIM that can be used to manage all data on the bridge across its life cycle. The flow must 
support a semantically rich geometry model, assessment of monitoring equipment and treatment 
of the resulting data, and visualization of the data in the bridge model while also enabling analysis 
and predictions. This requires interaction and data transfer between different platforms that do not 
necessarily communicate directly. Enabling such transfers and interactions is a major challenge, 
as is establishing interactions between the equipment and its digital mirror. In the literature, the 
main way of overcoming these challenges was to use IFC to categorize the inspection information 
and standardize its storage in a format suitable for comparison and sharing with different users.  
 
At present, BIM is mainly used for design purposes and is rarely applied in asset management. 
The main issue reported in the literature when using commercial software to create BrIM stemmed 
from the complex geometry of the structures, which can generally not be properly represented 
using standard libraries. It is therefore often necessary to spend considerable amounts of time to 
design new families for each modelling effort. Autodesk Revit [36] was the commercial BIM 
software favoured by most authors because of its interoperable IFC platform and the fact that it is 
readily modified using its application-programming interface. Most studies included in this 
review combined a structural health management and/or monitoring system with a BIM [13, 14, 
15, 20, 21, 26, 28, 32, 34, 35, 37, 55, 56, 57]. 
 
Different solutions can be used to tackle these challenges. Among the reviewed studies, the most 
common strategy for integrating different kinds of data was to use separate layers or models in 
the digital twin [42, 43, 44, 58]. These layers often included a data acquisition layer, a layer for 
3D representation of geometry and visualization of sensor data, and a layer for 
transmission/integration of data resources. The 3D geometry can be automatically compiled from 
remote sensing data and coupled with an engine for converting the 3D model into a BIM [20]. In 
addition to separate layers, IFC [13, 34, 43 59], MATLAB [19, 37], and machine learning 
algorithms [11, 26, 41] were also used to facilitate data integration between platforms. 
 
Based on the summary presented in Table 1, some observations about current practices in BMS 
can be made. First, no existing BMS includes BrIM or geometric representations of bridges of 
any kind  [13, 46]. Traditional paper-based methods of maintaining infrastructure are no longer 
viable because governments now expect digital tools that leverage information and 
communication technology [4]. Additionally, fewer than half of the systems allow remote or 
online access to the BMS; most only allow access through desktop computers, which limits access 
to information. This should be addressed because many of the technological advances in 
infrastructure management rely on cloud-based, mobile, and/or portable technology. The BIM can 
be linked to the BMS using many different methods and tools including Structured Query 
Language (SQL) statements [60]; C# [60], MATLAB [19, 37] or other programming languages; 
IFC [13, 34, 43, 61, 62, 63]; or machine learning [11, 26, 41] and artificial intelligence algorithms 
[64]. 
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Most current systems can manage information on inspections and interventions. However, to 
enable adequate life cycle management, a BMS should also include budgetary information and 
data from construction and design plans so that they can be compared to the current condition data 
obtained from inspections. This enables future deterioration to be predicted more accurately and 
facilitates the planning of interventions. Many current systems can also predict deterioration – i.e. 
changes in physical condition or performance indicators [46], mainly using probabilistic methods. 
However, there have been many advancements in structural analysis using BMS frameworks that 
could be used to make improvements in this area; examples include the development of automated 
bridge assessment tools using artificial intelligence algorithms [64] and the combination of BIM 
with FE models [60, 65] and Geographic Information Systems (GIS) [62]. Figure 4 presents a 
modular framework of activities that should be supported by a comprehensive BMS based on an 
evaluation of the data entering a typical BMS [1, 3, 4, 5, 51, 52, 61, 66]. 
 
This review identified several papers published over the last decade dealing with the first two 
processes within the concept presented, i.e. (1) Inspection and (2) BIM creation. Different 
inspection and monitoring technologies have been tested and compared, and automated inspection 
methodologies have been developed and linked to BIM. However, the potential uses of BIM and 
BrIM post-construction remain under-explored. 
 

 
 
Figure 4 - Management activities within the suggested scope of a BMS. 
 
Research on digital twins in construction is less well established than in other sectors such as 
aerospace [67], but interest in their application is growing rapidly, as demonstrated by the trends 
shown in Figure 2. However, there is currently no consensus about what a digital twin model 
should include and how it should operate. Therefore, the “digital twins” used in many published 
works would be more accurately described as "digital models" or "digital shadows" (Figure 3) 
that lack the full capabilities expected of a digital twin. The automation of the two-way data flow 
between the physical entity and the digital model is a major challenge in the development and 
post-construction use of digital twins. While there have been some initial studies in this area, 
much remains to be done. 
 
 
8. CONCLUDING REMARKS 
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The growing stock of bridges and the increasing need to optimize investments in bridge 
maintenance while ensuring safe operation have created a demand for optimized bridge 
management systems. In recent years, there have been major advances in technologies for bridge 
inspection, damage detection, digital modelling, and maintenance. This state-of-the-art literature 
review of asset management for bridges using BIM and Digital Twins summarizes these advances. 
To this end, the review examined four processes and tools separately: inspection, BIM, Digital 
Twins, and Asset Management. Each has been addressed in the literature using methods that 
combine different sets of solutions and technologies. Despite the rapid increase in research on 
digital twins and the large body of existing research on BIM and bridge inspection, several gaps 
remain to be addressed:  
 

• The potential uses of BIM and BrIM post-construction are still under-explored; 
• There is no consensus concerning the definition of digital twins, which has caused digital 

models and digital shadows to be wrongly categorized as digital twins; 
• The development of functional digital twins requires a very complex automated data flow, 

which has hindered the exploitation of their full potential.  
• There has been little work on the development of asset management and structural health 

systems using digital twins for bridge structures. 
 
The analysis in this review also revealed some points of improvement in current BMS for asset 
management of bridges: 
 

• Geometric representations of the bridges under management (e.g. BIM) should be 
integrated into existing BMS; 

• Remote or online access to existing BMS should be made possible;  
• Automated inspection procedures (e.g. automated damage detection processes) should be 

introduced and linked to the BMS, preferably directly to a BIM; 
• Life cycle analysis should be incorporated into the systems. This would require better 

integration of construction information to enable comparisons to inspection data on the 
structure’s current condition, as well as predictions of deterioration generated using 
structural analysis tools such as FE modelling to enable better planning of interventions. 

• Structural analysis and deterioration predictions should be improved; such improvements 
could have direct impacts on subsequent budgetary analyses.  

• Budget analysis throughout the bridge’s life cycle should be integrated into the system and 
should include peripheral costs such as those due to traffic delays, accidents, 
environmental costs, and inspection and maintenance costs.  

 
This literature review is a part of a project aiming to develop a BMS for asset management of 
bridges using digital twins. Future work should include studies on the use of IFC with SHM 
systems, automated damage detection during bridge inspections, and machine learning algorithms 
to improve the links between the system’s modules. 
 
 
ACKNOWLEDGEMENTS 
 
This work was carried out within the strategic innovation program InfraSweden2030, a joint 
venture by Vinnova, Formas and The Swedish Energy Agency. The work is also funded by SBUF 



Nordic Concrete Research – Publ. No. NCR 66 – ISSUE 1 / 2022 – Article 6, pp. 93-113 
 
 

 
 

109 
 

(construction industry's organization for research and development in Sweden) and Skanska 
Sweden. 
 
 
REFERENCES 
 
1. Woodward R, Cullington D W, Daly A F, Vassie P R, Haardt P, Kashner R, Astudillo R, 

Velando C, Godart B & Cremona C: “Bridge management in Europe (BRIME) -Deliverable 
D14”. Final Report, 2001. 

2. Hurt M & Schrock S: “Highway Bridge Maintenance Planning and Scheduling”. Chapter 1, 
“Introduction”, 2016, pp. 1–30. 

3. Khan M A: “Accelerated Bridge Construction”, Butterworth-Heinemann, Boston, USA, 
2015, pp. 53–102. 

4. Powers N, Frangopol D M, Al-Mahaidi R & Caprani C: “Maintenance, safety, risk, 
management and life-cycle performance of bridges”, CRC Press, London, UK, 2018, p. 
219–225. 

5. Darbani B M & Hammad A: “Critical review of new directions in bridge management 
systems”. Computing in Civil Engineering, 2007, pp. 330–337. 

6. Boje C, Guerriero A, Kubicki S & Rezgui Y: “Towards a semantic Construction Digital 
Twin: Directions for future”. Automation in Construction, Vol. 114, No. 103179, 2020.  

7. Grieves M & Vickers J: “Digital Twin: mitigating unpredictable, undesirable emergent 
behavior in complex systems”, Transdisciplinary Perspectives on Complex Systems, 
Springer, Cham, 2017, pp. 85–113. 

8. Cimino C, Negri E & Fumagalli L: “Review of digital twin applications in manufacturing”. 
Computers in Industry, Vol. 113, No. 103130, 2019.  

9. Lu Q, Parlikad A K, Woodall P, Don Ranasinghe G, Xie X, Liang Z, Konstantinou E, 
Heaton J & Schooling J: “Developing a Digital Twin at Building and City Levels: Case 
Study of West Cambridge Campus”. Journal of Management in Engineering, Vol. 36, No. 
05020004, 2020.  

10. ELSEVIER: “Scopus”, ELSEVIER, 2021. [Online]. Available: https://www.scopus.com/. 
[Accessed 2021]. 

11. Morgenthal G, Hallermann N, Kersten J, Taraben J, Debus P, Helmrich M & Rodehorst V: 
“Framework for automated UAS-based structural condition assessment of bridges”. 
Automation in Construction, Vol. 97, pp. 77–95, 2019.  

12. Omer M, Margetts L, Hadi Mosleh M, Hewitt S & Parwaiz M: “Use of gaming technology 
to bring bridge inspection to the office”. Structure and Infrastructure Engineering, Vol. 15, 
No. 10, 2019, pp. 1292–1307. 

13. Isailovic D, Stojanovic V, Trapp M, Richter R, Hajdin R & Döllner J: “Bridge damage: 
Detection, IFC-based semantic enrichment and visualization”. Automation in Construction, 
Vol. 112, No. 103088, 2020.  

14. Popescu C, Täljsten B, Blanksvärd T & Elfgren L: “3D reconstruction of existing concrete 
bridges using optical methods”. Structure and Infrastructure Engineering, Vol. 15, No. 7, 
2019, pp. 912-924. 

15. Delgado J M D, Butler L J, Gibbons N, Brilakis I, Elshafie M Z E B & Middleton C: 
“Management of structural monitoring data of bridges using BIM”. Bridge Engineering, 
Vol. 170, 2017, pp. 204-218. 

16. Butler L J, Elshafie M Z E B & Middleton C R: “Pervasive Fibre-optic sensor networks in 
bridges: a UK case study”. Proceedings, 9th International Conference on Bridge 



Nordic Concrete Research – Publ. No. NCR 66 – ISSUE 1 / 2022 – Article 6, pp. 93-113 
 
 

 
 

110 
 

Maintenance, Safety and Management, IABMAS, Melbourne, Australia, 2018, pp.1738-
1745.  

17. Xu Y & Turkan I: “BrIM and UAS for bridge inspections and management”. Engineering, 
Construction and Architectural Management, Vol. 27, No. 3, 2019, pp. 785-807. 

18. Donato V, Biagini C, Bertini G & Marsugli F: “Challenges and opportunities for the 
implementation of H-BIM with regards to historical infrastructures: a case study of the 
Ponte Giorgini in Castiglione della Pescaia (Grosseto - Italy)”. The International Archives 
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-5/W1, 
2017, pp.253-260.  

19. Riveiro B, Jauregui D V, Arias P, Armesto J & Jiang R: “An innovative method for remote 
measurement of minimum vertical underclearance in routine bridge inspection”. 
Automation in Construction, Vol. 25, 2012, pp. 34–40. 

20. Sacks R, Kedar A, Borrmann A, Ma L, Brilakis I, Hüthwohl P, Daum S, Kattel U, Yosef R, 
Liebich I, Barutcu B E & Muhic S: “SeeBridge as next generation bridge inspection: 
Overview, information delivery manual and model view definition”. Automation in 
Construction, Vol. 90, 2018, pp. 134–145. 

21. Banfi F, Barazzetti L, Previtali M & Roncoroni F: “Historic BIM: a new repository for 
structural health monitoring”. The International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Vol. XLII-5/W1, 2017.  

22. Cha G, Park S & Oh T: “A Terrestrial LiDAR-Based Detection of Shape Deformation for 
Maintenance of Bridge Structures”. Journal of Construction Engineering and Management, 
Vol. 145(12), No. 04019075, 2019.  

23. Barazzetti L, Banfi F, Brumana R, Previtali M & Roncoroni F: “BIM from laser scans... not 
just for buildings: NURBS-based parametric modeling of a medieval bridge”. ISPRS Annals 
of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. III-5, 2016, pp. 
51-56.  

24. McKenna T, Minehane M, O'Keeffe B, O'Sullivan G & Ruane K: “Bridge information 
modelling (BrIM) for a listed viaduct”. Proceedings of the Institution of Civil Engineers - 
Bridge Engineering, Vol. 170, 2017, pp.1-12.  

25. León-Robles C A, Reinoso-Gordo J F & González-Quiñones J J: “Heritage building 
information modeling (H-BIM) applied to a stone bridge”. International Journal of Geo-
Information, Vol. 8, No. 121, 2019.  

26. Borin P & Cavazzini F: “Condition assessment of RC bridges. Integrating machine learning, 
photogrammetry and BIM”, ISPRS - International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Vol. XLII-2/W15, 2019, pp.201-208.  

27. Stavroulaki M E, Riveiro B, Drosopoulos G A, Solla M, Koutsianitis P & Stavroulakis G 
E: “Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry 
and finite elements”. Advances in Engineering Software, Vol. 101, 2016, pp. 136-148.  

28. Abu Dabous S, Yaghi S, Alkass S & Moselhi O: “Concrete bridge deck condition 
assessment using IR Thermography and Ground Penetrating Radar technologies”. 
Automation in Construction, Vol. 81, 2017, pp. 340-354. 

29. Alani A M, Aboutalebi M & Kilic G: “Integrated health assessment strategy using NDT for 
reinforced concrete bridges”. NDT&E International, Vol. 61, 2014, pp. 80-94. 

30. Conde B, Ramos L F, Oliveira D V, Riveiro B & Solla M: “Structural assessment of 
masonry arch bridges by combination of non-destructive testing techniques and three-
dimensional numerical modelling: Application to Vilanova bridge”. Engineering 
Structures, Vol. 148, 2017, pp. 621-638. 



Nordic Concrete Research – Publ. No. NCR 66 – ISSUE 1 / 2022 – Article 6, pp. 93-113 
 
 

 
 

111 
 

31. Mathworks: “MATLAB”. MathWorks, 2021. [Online]. Available: 
https://www.mathworks.com/products/matlab.html. [Accessed 2021]. 

32. McGuire B, Atadero R, Clevenger C & Ozbek M: “Bridge information modeling for 
inspection and evaluation”. Journal of Bridge Engineering, Vol. 21(4), No. 04015076, 
2016.  

33. Microsoft: “Excel”, Microsoft, 2021. [Online]. Available: https://www.microsoft.com/sv-
se/microsoft-365/excel. [Accessed 2021]. 

34. Huthwohl P, Brilakis I, Borrmann A & Sacks R: “Integrating RC bridge defect information 
into BIM models”. Journal of Computing in Civil Engineering, Vol. 32(3), No. 04018013, 
2018, pp. 1–14. 

35. Jeonga S, Hou R, Lynch J P, Sohn  H & Law K H: “An information modeling framework 
for bridge monitoring”. Advances in Engineering Software, Vol. 114, 2017, pp. 11-31. 

36. AUTODESK: “Revit”, AUTODESK, 2021. [Online]. Available: 
https://www.autodesk.com/products/revit/overview. [Accessed 2021]. 

37. Boddupalli C, Sadhu A, Rezazadeh Azar E & Pattyson S: “Improved visualization of 
infrastructure monitoring data using Building Information Modeling”. Structure and 
Infrastructure Engineering, Vol. 15, No. 9, 2019, pp. 1247-1263. 

38. Kritzinger W, Karner M, Traar G, Henjes J & Sihn W: “Digital Twin in manufacturing: a 
categorical literature review and classification”. IFAC PapersOnLine, Vol. 51, No. 11, 
2018, pp. 1016-1022. 

39. Negri E, Fumagalli L & Macchi M: “A review of the roles of Digital Twin in CPS-based 
production systems”. Procedia Manufacturing, Vol. 11, 2017, pp. 939-948. 

40. Sacks R, Brilakis I, Pikas E, Xie H & Girolami M: “Construction with digital twin 
information systems”. Data-Centric Engineering, Vol. 1, No. E14, 2020.  

41. Khajavi S H, Motlagh N H, Jaribion A, Werner L C & Holmstrom J: “Digital Twin: Vision, 
benefits, boundaries, and creation for buildings”. IEEE Access, Vol. 7, 2019, pp. 147406-
147419.  

42. Shim C S, Dang N S, Lon S & Jeon C H: “Development of a bridge maintenance system 
for prestressed concrete bridges using 3D digital twin model”. Structure and Infrastructure 
Engineering, Vol. 15, No. 10, 2019, pp. 1319-1332. 

43. Lu R & Brilakis I: “Digital twinning of existing reinforced concrete bridges from labelled 
point clusters”. Automation in Construction, Vol. 105, No. 102837, 2019.  

44. Ye C, Butler L, Calka B, Iangurazov M, Lu Q, Gregory A, Girolami  M & Middleton C: “A 
digital twin of bridges for structural health monitoring”, Proceedings, 12th International 
Workshop on Structural Health Monitoring - IWSHM, Stanford, USA, 2019.  

45. FHWA: “Bridge Preservation and Maintenance in Europe and South Africa”, Washington 
D.C., USA, 2005. 

46. Mirzaei Z, Adey B T, Klatter L & Thompson P: “The IABMAS Bridge Management 
Committee Overview of Existing Bridge Management Systems”, International Association 
for Bridge Maintenance and Safety (IABMAS), Sapporo, Japan, 2014. 

47. Helmerich R, Niederleithinger E, Algernon D, Streicher D & Wiggenhauser H: “Bridge 
inspection and condition assessment in Europe”. Transportation Research Record, Vol. 
2044, 2008, pp. 31–38.  

48. Thompson P D, Small E P, Johnson  M & Marshall A R: “The Pontis Bridge Management 
System”. Structural Engineering International, Vol. 8(4), 1998, pp. 303–308. 

49. Gholami M, Sam A R M & Jamaludin M Y: “Assessment of Bridge Management System 
in Iran”. Procedia Engineering, Vol. 54, 2013, pp. 573-583. 



Nordic Concrete Research – Publ. No. NCR 66 – ISSUE 1 / 2022 – Article 6, pp. 93-113 
 
 

 
 

112 
 

50. Mendonça T, Brito V & Milhazes F: “Aplicação de gestão de obras de arte - GOA - nova 
geração” (Bridge management application – GOA – new generation). BETAR Consultores 
Ltda., Lisbon, 2010 (in Portuguese). 

51. Mocoso Y F M: “Modelos de Degradação para Aplicação em Sistemas de Obras de Arte 
Especiais – OAEs” (Degradation models for bridge application systems) (PhD Thesis), 
University of Brasília, Brasília, Brazil, 2017 (in Portuguese).  

52. Liao H K & Yau N J: “Development of Various Bridge Condition Indices for Taiwan Bridge 
Management System”, Proceedings, 28th International Symposium on Automation and 
Robotics in Construction, Seoul, Korea, 2011, pp.911-916.  

53. Safi M, Sundquist H, Karoumi R & Racutanu G: “Development of the Swedish bridge 
management system by upgrading and expanding the use of LCC”. Structure and 
Infrastructure Engineering, Vol. 9(12), 2013, pp. 1240-1250. 

54. Mirzaei Z, Adey B T, Klatter L & Thompson P: “The IABMAS bridge management 
committee overview of existing bridge management systems”, International Association for 
Bridge Maintenance and Safety (IABMAS), Sapporo, Japan, 2014. 

55. Chan B, Guan H, Hou L, Jo J, Blumenstein M & Wang J: “Defining a conceptual framework 
for the integration of modelling and advanced imaging for improving the reliability and 
efficiency of bridge assessments”. Journal of Civil Structural Health Monitoring, Vol. 6, 
2016, pp. 703-714. 

56. Hendy C, Brock C & Nicholls T: “Management of the M4 Elevated Section substructures”. 
Proceedings of the Institution of Civil Engineers: Bridge Engineering, No. 1600006, 2017.  

57. Previtali M, Barazzetti L, Banfi F & Roncoroni F: “Informative content models for 
infrastructure load testing management: The Azzone Visconti bridge in Lecco”. ISPRS - 
International Archives of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences, Vol. XLII-2/W11, 2019, pp. 995-1001.  

58. Tao F, Zhang M, Liu Y & Nee A Y C: “Digital twin driven prognostics and health 
management for complex equipment”. CIRP Annals, Vol. 67, 2018, pp. 169-172. 

59. Brilakis I & Ariyachandra M: “Application of Railway Topology for the Automated 
Generation of Geometric Digital Twins of Railway Masts”. ECPPM 2021 – eWork and 
eBusiness in Architecture, Engineering and Construction, 2021, pp. 373-380.  

60. Dibernardo S: “Integrated modelling systems for bridge asset management - case study”, 
Structures Congress, Reston, USA, 2012, pp. 483-493.  

61. Brady K C, O’Reilly M, Bevc L, Znidaric A, O’Brien E & Jordan R: “Cost 345 - Procedures 
required for the assessment of highway structures - Final report”. European Co-operation in 
the Field of Scientific and Technical Research, Brussels, Belgium, 2009. 

62. Zhao Z, Gao Y, Hu X, Zhou Y, Zhao L, Qin G, Guo J, Liu Y, Yu C & Han D: “Integrating 
BIM and IoT for smart bridge management”, Proceedings, IOP Conference Series: Earth 
and Environmental Science, Vol. 371, No. 022034, 2019.  

63. Zhu J, Tan Y, Wang X & Wu P: “BIM/GIS integration for web GIS-based bridge 
management”. Annals of GIS, Vol. 27(1), 2020, pp. 99-109. 

64. Marzouk M M & Hisham M: “Bridge information modelling in sustainable bridge 
management”. Proceedings, International Conference on Sustainable Design and 
Construction - ICSDC, Kansas City, USA, 2011, pp. 457-466.  

65. Wan C, Zhou Z, Li S, Ding Y, Xu Z, Yang Z, Xia Y & Yin F: “Development of a bridge 
management system based on the building information modelling technology”. 
Sustainability, Vol. 11, No. 4583, 2019.  

66. Hallberg D & Racutanu G: “Development of the Swedish bridge management system by 
introducing a LMS concept”. Materials and Structures, Vol. 40, 2007, pp. 627-639.  



Nordic Concrete Research – Publ. No. NCR 66 – ISSUE 1 / 2022 – Article 6, pp. 93-113 
 
 

 
 

113 
 

67. Shafto M, Conroy M, Doyle R, Glaessgen E, Kemp C, LeMoigne J & Wang L: “DRAFT 
Modeling, Simulation, Information Technology & Processing Roadmap”, Technology Area 
11, 2010.  



 

 

  



 

PAPER II 

 

 

Framework for Bridge Management Systems (BMS) using Digital Twins 

 

 

Vanessa Saback de Freitas Bello, Cosmin Popescu, Thomas Blanksvärd, Björn Täljsten 

 

 

 

 

 

 

 

Published in: 

Lecture Notes in Civil Engineering 

EUROSTRUCT: 1st Conference of the European Association on Quality Control of 

Bridges and Structures. 

Padova, Italy, 2021. 

pp. 687-694 

DOI: 10.1007/978-3-030-91877-4_78 

 

  



 

 

 



vanessa.saback.de.freitas@ltu.se

















 

PAPER III 

 

 

Correlation between surface deformation and reinforcement strain for RC structures: a 

comparative study between Finite Element and Machine Learning models 

 

 

Vanessa Saback, Ali Mirzazade, Cosmin Popescu, Thomas Blanksvärd, Björn Täljsten 

 

 

 

 

 

 

 

Submitted to: 

Engineering Structures 

October 2022 

  



 

 



1 

 

Correlation between surface deformation and reinforcement 

strain for RC structures: a comparative study between Finite 

Element and Machine Learning models 

 

Authors: Saback, V.1*, Mirzazade, A.1, Popescu, C.1,2, Blanksvärd, T.1, Täljsten, B.1 

1 Luleå University of Technology (LTU), Department of Civil, Environmental and Natural 

Resources Engineering. Luleå University of Technology, 97187 Luleå, Sweden 

2 SINTEF Narvik AS, Narvik, 8517, Norway 

* Corresponding author: vanessa.saback@ltu.se 

Abstract: Structural Health Monitoring (SHM) and Non-Destructive Testing (NDT) 

technologies have greatly advanced over the last decades, however, obtaining information 

about internal damage in a structure is still more challenging. In this paper, an experimental 

program was conducted with two reinforced concrete beams subjected to a three-point 

bending test. A Digital Image Correlation (DIC) system was used to measure deformation in 

the surface of the concrete, and Fiber Optic Sensors (FOS) were bonded to the embedded 

reinforcement bars to measure strain. Correlation between the external deformation from DIC 

and internal strain from FOS was evaluated through Machine Learning (ML) and Finite 

Element (FE) models, which were compared in terms of accuracy. As a result, reinforcement 

strain could be predicted from surface deformation with an accuracy of 86%, and errors in the 

scale of 10-2. The difference in accuracy and processing time between ML and FE was not 

significant, but the FE predictions tended to underestimate the reinforcement strain. 

Keywords: surface deformation, reinforcement strain, digital image correlation, fiber optic sensors, 

finite element modelling, machine learning.  

1. Introduction 

Structural Health Monitoring (SHM) might be used as a damage detection strategy that can 

observe a structure over a period of time, using a series of continuous measuring devices [1]. 

Features extracted from these measurements and the statistical analysis of such measures can 

provide the ability to assess the current performance of structures [1]. The fundamental 

concept behind asset management of reinforced concrete (RC) structures consists of obtaining 

information about the structure’s current condition and applying this information to decision 

making in maintenance planning. To acquire such information, SHM techniques are usually 

employed.  

Defects that can be visualized externally, such as surface deformation, crack propagation, and 

excessive displacements, are more straightforward to measure. For these types of damage, 

non-destructive and non-contact methods can be applied, which normally are less costly. The 

safety provided by non-contact methods is particularly important when it comes to structures 
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in areas that are harder to access. Investigation of internal damage such as excessive 

reinforcement strain, voids, delamination, and corrosion, however, is more challenging. It 

requires specific equipment, like ultrasound, impact echo, electric potential measurement or 

ground penetrating radar instruments that allow visualization through the concrete exterior. 

Moreover, existing structures under investigation usually have not been instrumented with 

any kind of sensor. Techniques that yield information from the structure’s inside from its 

external conditions are not only beneficial, but necessary. Information on current degradation 

of a structure can be used for prediction of future behavior and to plan maintenance 

accordingly. This prediction can be achieved through degradation models, by creating a 

damaged state in a Finite Element (FE) model or by prediction algorithms in Machine Learning 

(ML) models, for example.  

If both external and internal damage are known in a structure, some form of correlation 

between both can be generated so internal damage can be quantitatively inferred from external 

deformation. This study has the objective of establishing a correlation between surface 

deformation, measured by a Digital Image Correlation (DIC) system, and reinforcement strain, 

measured by Fiber Optic Sensors (FOS) in a reinforced concrete beam specimen tested in 

laboratory. To establish correlation, a data-driven approach, through Machine Learning 

algorithms, and a model-driven approach, through a Finite Element model, were tested and 

compared. Both approaches were compared in terms of accuracy, processing time, and 

information needed to run the prediction models. The accuracy of the models was established 

by comparison with the experimental data measured by FOS.  

The benefits of DIC and FOS in monitoring of RC structures have been well established in the 

literature, as shown by examples in this section. Section 2. Experimental program presents the 

laboratory work conducted to provide data for the analysis. The results from the ML and FE 

numerical analysis are presented in section 3. Numerical analysis. In section 4. Discussion, the 

performance of the methods is compared, and final remarks are presented in section 5. 

Conclusions. 

Conventional damage detection techniques are gradually being replaced by state-of-the-art 

smart monitoring and decision-making solutions; the connection between sensor data and big 

data processing of critical information in infrastructures through Internet of Things (IoT) is the 

future of SHM systems [1]. In that sense, this study is part of a broader research project, which 

aims at improving damage detection and asset management for civil structures.  

1.1. Correlation: DIC and FOS 

The basic principle of strain-based monitoring is that changes in the physical properties of a 

structure will cause changes in the amplitudes of strain measurements [2]. Traditional 

methods for measuring strain are limited, tedious and time consuming, which justifies the 

need for improved, automated, and non-contact strain measurement methods.  

DIC is an optical, non-destructive, and non-contact displacement measuring technique, that 

measures deformation through comparison of images of random speckle patterns taken before 

and after surface deformation. In RC structures, DIC has been widely applied to the study of 
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concrete deformation and cracking. Crack monitoring is an important aspect of diagnosing 

structural health [3]. Most studies identified in the literature employ DIC to predict crack 

location, crack width and investigate crack propagation [4].  

Different studies have investigated the correlation between surface deformation from DIC and 

strain in embedded reinforcement from FOS in RC [5]–[8] due to the advantages of both 

methods in comparison to traditional approaches. The suitability of FOS in SHM has been 

tested in various experiments in the laboratory, as well as field applications, with encouraging 

results in the field of civil engineering structures [5]. Besides providing continuous strain 

measurements, FOS are chemically inert, resistant to corrosion, lightweight, and able to 

operate over a wide range of temperatures [5]. For these reasons, these sensors are believed to 

have the potential to change the instrumentation industry in the same way fiber optics have 

revolutionized communications [9].  

Barrias et al. [10] presented an extended review covering an introduction to the theoretical 

background of FOS, the latest developments and improvements of these products, laboratory 

experiments and their diverse applications in civil engineering structures. Brault et al. [6] 

proposed an analytical model to estimate reinforcement strain from crack width and compared 

to experimental results obtained from FOS and DIC, respectively. The model provided 

accurate estimates of load carrying capacity for a given crack width, however, accuracy was 

lower when experimental reinforcement strains were estimated from crack widths [6].  

Carmo et al. [7] described a method to assess reinforcement strain from surface measurements 

obtained through photogrammetry and image processing in two concrete ties experimentally 

tested. Ruocci et al. [8] focused on large structures, describing the use of DIC for crack 

assessment of RC massive beams and walls. The authors proposed a post-processing noise-

filtering technique, validated on a large experimental campaign, to improve DIC results in 

large RC structures. Feng et al. [11] developed a shear lag–based model for detection of cracks 

and their location compared to strain distribution measured by FOS in an experimental 

program. The results indicated that the discontinuities in the strain distribution, such as cracks, 

based on the theoretical analysis provided the means to accurately pinpoint the location of 

simulated cracks. 

In Berrocal et al. [5], distributed FOS were bonded to the unaltered surface of a reinforcement 

bar of concrete beams subjected to three-point bending tests. The comparison between the 

strain profiles provided by the FOS and measurements from a DIC system showed that the 

cracks were located with most errors below ±30 mm, and the evolution of crack width over 

time was tracked with most errors below ±20 m [5]. The authors found that the position of 

active fully formed cracks, associated to local peaks of strain, could be located based on the 

strain distribution at the reinforcement provided by FOS. The tested methodology enabled the 

successful detection of cracks as small as 40 m, not perceptible to the human eye. However, 

the determination of the crack position was less apparent than for sensors bonded to the 

surface or embedded in the concrete and it required a certain post-processing of the strain data 

to remove the noise associated to the spatial variability [5].  
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1.2 Numerical modelling and Machine Learning 

In a previous study, Mirzazade et al. [12] proposed a semi-empirical equation for prediction 

of strain in the embedded reinforcement from DIC measurements. The two main aspects in 

need of improvement of this study were the limited number of collected data, due to point 

strain gauge sensors, and the large number of variables in the equation, which made it difficult 

to compute. For these reasons, in this study the FOS were installed for strain measurements, 

and Machine Learning algorithms were employed for regression analysis. 

In the age of the smart city, Internet of Things (IoT), and big data analytics, the complex nature 

of data-driven civil infrastructures monitoring frameworks has not been fully matured yet [1]. 

Machine learning (ML) algorithms are thus providing the necessary tools to augment the 

capabilities of SHM systems and provide intelligent solutions for the challenges of the past. [1] 

Crack assessment using DIC is very precise but can require huge computational resources and 

be very time-consuming [13]. Different approaches to monitoring and evaluation of surface 

cracks, such as ML algorithms, can be combined with DIC for better description and 

assessment of concrete elements [13]. However, this kind of research is still scarce in the 

literature. In Słoński & Tekieli [13], DIC-based monitoring was used to estimate deformation 

and crack width measurement on the concrete surface, and region-based convolutional neural 

network (R-CNN) provided accurate automated monitoring and assessment of crack 

development during laboratory quasi-static tests.  

Two different approaches were evaluated in this study: a model driven approach, through a 

Finite Element model, and a data driven approach, using Machine Learning algorithms. In a 

model driven approach, the damaged structure is identified from the obtained measurements 

by comparison with an undamaged state, represented by a physical model, typically FE. An 

accurate analytical model of the structure requires validation from experimental results, can 

be computationally intensive and carry model discrepancies, with little to no information 

about joints and bonds, especially for complex structures [1]. Other than relying on the 

physical model of the structure, in a data driven approach the model construction is dependent 

on statistical pattern recognition, which is usually applied by ML algorithms. However, not 

every ML algorithm is capable of damage prognosis, meaning data-driven approaches are not 

always predictive models [1].  

Therefore, the decision between employing model-driven or data-driven SHM systems or both 

will depend on the proposed system’s requirements, the complexity of the application where 

the system is deployed, and if the existing data and models can support and provide valuable 

inferences about the health state of the structure [1]. 

In recent years, convolutional neural networks (CNN) have been developed and applied for 

online automatic detection of concrete cracks and structural damage [13]. Zheng et al. [14] 

reviewed and summarized the development and application of non-destructive testing (NDT) 

technology for prestressed reinforced concrete infrastructures. The authors concluded that 

detection visualization, accuracy and efficiency of NDT technology can be improved by 
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combination with artificial intelligence technology, such as neural network deep learning and 

imaging analysis. 

Malekloo et al. [1] provided a very thorough review on SHM and ML, and an outlook on the 

future of monitoring systems in assessing civil infrastructure integrity. The authors concluded 

that the extension of ML in SHM dramatically increases the system’s capabilities, providing 

innovative solutions for different research challenges. 

2. Experimental program 

2.1 Test set up 

In the experimental program, two reinforced concrete beam specimens were subject to a three-

point bending test. The machine type “Dartec 600 kN” ran in stroke control with an induced 

displacement rate of 0.01 mm/s for both beams until failure. The reinforcement consisted of 

two 𝜙16 mm ribbed rebars, one in tension and one in compression, and 8 𝜙8 mm stirrups every 

80mm. The reinforcement was calculated for a ductile failure mode, through tensile rather than 

compression strain. Figure 1 illustrates the test set up, differentiating the external deformation 

seen by the naked eye and measured by DIC, and internal damage represented by 

reinforcement strain and measured by FOS. 

 

Figure 1. Test set up; frontal elevation (left), cross section (center) and longitudinal section (right).  

2.2 Instrumentation 

The beam specimens were instrumented with coated FOS, a DIC system and strain gauges. 

The strain gauges were placed on the concrete surface for point strain measurements, in the 

center of the lower surface and adjacent to the load cell in the upper surface, as illustrated in 

Figure 1.  

The differences between bonding the sensors to the concrete surface or to the rebars have been 

studied in the literature – for example, see [5]. In this study, the FOS were placed inside a 

groove carved in each rebar and bonded with an epoxy glue to measure strain along their 

length. For each bar, the sensors were also placed adjacent to the rebars and fixated to its 

exterior with a plastic strip. It was the objective of a companion study by Saback et al. [15] to 

evaluate the difference in measuring strain inside the rebar and in the concrete adjacent to it. 

The authors in [15] found the measurements in the concrete to be less reliable, therefore these 

results were excluded from this analysis and only the measurements in the rebars will be 
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considered. One single five-meter sensor was applied to each beam, including loops in the 

ends to allow them to exit the formwork and return to cover all the necessary rebar length. The 

fiber optic system used was ODiSI 6, from Luna Innovations Inc. [16]. Figure 2 presents a 

picture with the position of the FOS in the beam before casting. 

ARAMIS 5M [17] was the chosen DIC system to analyze the specimens. As described in Saback 

et al. [15], the set up for the ARAMIS system consisted of two 5 MegaPixel cameras rotated to 

a 25o angle, finely aligned with the embedded laser pointer towards the center of the specimen. 

The calibration of the cameras was performed using a Calibration Cross CC20/700x560, and 

the camera’s tilt angle, focus, aperture, illumination, and shutter speed were also adjusted to 

the standards of the test established by the ARAMIS user manual [17]. The facet size used was 

of 30px, with a point distance of 10px. The facet size was larger than the default value of 15px, 

which improved the accuracy of the resulting measuring points. The front surface of the beams 

had to be prepared before the image collection; holes were filled with wall putty, the surface 

was covered with white contrast spray paint in two layers, and a black speckle pattern was 

applied using a proper roller. The surface preparation is essential, and its quality can directly 

influence the precision of the results. A good surface should be smooth, with a good contrast 

speckle pattern and a dull finish, since reflections can prevent facet computation [18]. The 

quality of the speckle pattern is also relevant to the results, its most important attributes are 

speckle size, contrast, speckle edge and speckle density [19]. Figure 2 shows the DIC system 

tripod and the beam surface with the speckle pattern. 

  

Figure 2. DIC system setup, with speckle pattern on the beam’s front side (left), FOS in the rebars before casting 

(right). 

2.3 Material properties 

Three cubes were cast from the same concrete as the beams and tested in compression to obtain 

the resistance of the concrete. The compression test occurred on the same day the beams were 

tested, more than 28 days after casting, according to the Swedish Standard SS-EN 12390-3:2019 

[20]. The average compression strength obtained was 𝑓𝑐𝑚 = 50.1 𝑀𝑃𝑎, with a standard deviation 

of 3.08 𝑀𝑃𝑎. The specimens were cast in laboratory. For the 𝜙16 mm and 𝜙8 mm reinforcement 

bars, B500B ribbed hot rolled bars were used, with 500 MPa Yield Strength, 1.08 tensile/yield 

strength ratio, and 200 GPa Young’s modulus, as informed by the supplier. 
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2.4 Results 

In the three-point bending test, the maximum load obtained for Beam 1 was 55.70kN, and, for 

Beam 2, 57.08kN. The machine that performed the test provided measurements of time, load 

increase and vertical displacement in the center of the upper surface, in the position of the 

piston. Figure 3 presents the experimental Load x Displacement graph for both beams. The 

bending reinforcement of 𝜙16 mm provided more than enough flexural resistance for this pilot 

test, therefore, both beams failed due to shear. Figure 4 presents a picture of the beam after 

failure, with a clear shear crack. 

 

Figure 3. Experimental Load - Displacement graph for Beams 1 and 2. 

   

Figure 4. DIC system setup for test cube with speckle pattern after failure (left), cracking on the back side of the 

beam after failure (right). 

2.4.1 Fiber Optic Sensors (FOS) 

The FOS bonded with epoxy inside a groove in each rebar provided continuous strain 

measurements along the bar length, until the end of the test. The results from the FOS are here 

presented in terms of Strain x Position, which corresponds to the horizontal length of the beam, 

from 0 to 60cm. Four FOS graphs were generated; one for the rebar in tension and one for 

compression, for both beams. Each graph contains five curves, with the evolution of the strain 

in the loading levels of 10kN, 20kN, 30kN, 40kN and 50kN. The peaks in the curves correspond 

to the position of the cracks. In the tension graphs, five peaks can be distinguished in Beam 1 

and six peaks in Beam 2, especially in the higher loads closer to failure. The FOS Strain x 
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Position graphs for the rebars in compression and tension in Beam 1 are presented in Figure 5, 

and in Beam 2, in Figure 6. 

 

Figure 5. Strain measurements from FOS in Beam 1 for the reinforcement bar in compression (left) and tension 

(right). 

 

Figure 6. Strain measurements from FOS in Beam 2 for the reinforcement bar in compression (left) and tension 

(right). 

2.4.2 Digital Image Correlation (DIC) 

Besides crack propagation, easily observed in Figure 7, Deformation x Position measurements 

were also obtained from the DIC system data. In Figure 7, it is possible to see two horizontal 

lines representing where the surface deformation measurements were taken; the black line 

corresponds to the position of the upper rebar (compression), and the yellow line of the lower 

rebar (tension). The DIC results are also presented in two Deformation x Position graphs for 

each beam, one for tension and one for compression, and in 5 different loading levels from 

10kN to 50kN (Figure 8 and Figure 9). The DIC curves present more noise than the FOS curves, 

especially those for compression measurements. In the tension graphs, the peaks which 

represent the position of the cracks are identifiable.  
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Figure 7. Crack propagation from DIC in Beam 2. 

 

Figure 8. Surface deformation from DIC in Beam 1 in the position of the reinforcement bar in compression (left) 

and tension (right). 

 

Figure 9. Surface deformation from DIC in Beam 2 in the position of the reinforcement bar in compression (left) 

and tension (right). 
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3. Numerical analysis 

3.1 Machine Learning 

The first numerical analysis performed in this study deployed the following machine learning 

algorithms: Decision Tree, Support Vector Machine (SVM), Convolutional Neural Networks 

(CNN), Ensemble (Bagged Trees), and Gaussian Process Regression (GPR). In this section, the 

models and algorithms used are presented as well as the results from the analysis. 

3.1.1 Model parameters 

The precision of the models fully depends on how well the dataset has been lined up to find 

the optimum hyperparameters. The best parameter for both training and validation sets was 

selected to counter underfitting and overfitting. Therefore, in the Decision Tree model, first 

the optimized hyperparameter, minimum leaf size of 1, is obtained. Then, Bayesian 

optimization method is performed as an optimizer in training epochs. Finally, the model was 

trained for 30 iterations. In the Gaussian SVM method, Gaussian was considered as Kernel 

function with the scale of 0.43.  

The application of CNN in data regression was studied for five different architectures. The 

first was a Narrow Neural Network (NN) with one fully connected layer including 10 nodes. 

The second, a Medium NN with one fully connected layer including 25 nodes. The third NN 

was Wide, with one fully connected layer and 100 nodes. The fourth NN was a Bi-layered NN 

with two fully connected layers and 10 nodes in each. The fifth and last NN was a Tri-layered 

NN with three fully connected layers and 10 nodes in each. The activation function used in the 

defined NN was ReLU, and all the models were trained for 1,000 iterations. 

Gaussian Process Regression (GPR) is a nonparametric, Bayesian approach to regression 

analysis that is creating a significant impression in machine learning. There are several benefits 

to GPR, including working well on small datasets and providing uncertainty measurements 

on predictions. The hyperparameters of the Kernel are optimized by a Bayesian optimizer 

during the GPR fitting. For this model, the prior’s covariance was specified by passing 

a Kernel object in an optimized scale of 0.0597. The noise standard deviation used by the 

algorithm, called Sigma, was optimized on 0.00917. Therefore, constant, and non-isotropic 

Rational Quadratic functions were used as covariance and Kernel functions, respectively. 

The parameters which served as input to the methods were position (x coordinate in the beam 

length), loading level and surface deformation in the tension rebar from DIC data, and the 

output was the predicted response for reinforcement strain in the tension rebar as well. All the 

models were trained using input data and their corresponding output data. Before the training 

stage, the datasets were divided into training and validation groups at an 80/20 ratio, to 

validate and test the methods. The training was carried out using an Intel Core i9-9880H CPU, 

running at 2.30 GHz. 

3.1.2 Results from ML 

Table 1 presents the results from the validation of the ML methods, with the training dataset 

from Beam 1. The reinforcement strain predictions generated from each method were 

https://scikit-learn.org/stable/modules/gaussian_process.html#gp-kernels
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compared to the strain values measured by the FOS and validated according to statistical 

parameters, besides prediction speed and training time. The statistical parameters presented 

in Table 1 are coefficient of determination (R2), Root-Mean-Square Error (RMSE), Mean-

Squared Error (MSE) and Mean Absolute Error (MAE). These parameters were chosen for 

being common in statistical analysis to compare predicted and true responses, and are briefly 

explained as follows: 

• Coefficient of determination (R2) indicates the proportional amount of variation in the 

response variable 𝑦 explained by the independent variables 𝑥 in the linear regression 

model (Equation 1). Larger values of R2 are desired, as it means more variability is 

explained by the linear regression model. 

𝑅2 = 1 −
∑ (∆𝜀𝑖,𝑡𝑟𝑢 − ∆𝜀𝑖,𝑝𝑟𝑒)

2𝑛
𝑖=1

∑ (∆𝜀𝑖,𝑡𝑟𝑢 −𝑚𝑒𝑎𝑛(∆𝜀𝑖,𝑡𝑟𝑢))
2

𝑛
𝑖=1

 

Equation 1 

Where, ∆𝜀𝑖,𝑝𝑟𝑒 and ∆𝜀𝑖,𝑡𝑟𝑢 are the estimated and true values of strain in the embedded 

reinforcement, respectively. 

• Root-Mean-Squared Error (RMSE) is a risk function used in regression analysis. It 

represents the average squared difference between the predicted and the true values, 

given by Equation 2. Smaller RMSE values are desired, as they indicate closer 

predictions to the true values, and, therefore, well trained models. The RMSE is 

considered a measure of quality for the prediction model. 

𝑅𝑀𝑆𝐸 = √∑ (∆𝜀𝑖,𝑝𝑟𝑒 − ∆𝜀𝑖,𝑡𝑟𝑢)
2𝑛

𝑖=1

𝑛
 

Equation 2 

• Mean-Squared Error (MSE) measures the quality of an estimator. It is derived from the 

square of Euclidean distance, so it is always a positive value that decreases as the error 

approaches zero. Therefore, smaller values are desired. MSE is calculated with 

Equation 3. 

𝑀𝑆𝐸 =
∑ (∆𝜀𝑖,𝑝𝑟𝑒 − ∆𝜀𝑖,𝑡𝑟𝑢)

2𝑛
𝑖=1

𝑛
 

Equation 3 

• Mean Absolute Error (MAE) is calculated in Equation 4 as the sum of absolute 

errors divided by the sample size. 

𝑀𝐴𝐸 =
∑ |∆𝜀𝑖,𝑝𝑟𝑒 − ∆𝜀𝑖,𝑡𝑟𝑢|
𝑛
𝑖=1

𝑛
 

Equation 4 

 

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Sample_size
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Table 1. Validation of ML methods, training dataset: 80% of test data (Beam 1). 

Model R2 RMSE MSE MAE 

Prediction 

speed 

(obs/sec) 

Training 

time 

(sec) 

Gaussian SVM 0.90 1.61E-02 2.59E-04 8.49E-01 ~80,000 1.80 

Narrow NN 0.90 1.67E-02 2.79E-04 9.55E-03 ~150,000 3.98 

Medium NN 0.91 1.55E-02 2.42E-04 8.85E-03 ~230,000 3.16 

Wide NN 0.91 1.53E-02 2.34E-04 8.15E-03 ~200,000 11.78 

Tri-layered 

NN 
0.91 1.56E-02 2.43E-04 8.16E-03 ~200,000 4.87 

Bi-layered NN 0.92 1.49E-02 2.22E-04 8.07E-03 ~220,000 4.00 

Decision Tree 0.95 1.17E-02 1.36E-04 5.05E-03 ~94,000 36.09 

Ensemble 0.96 1.00E-02 1.01E-04 4.41E-03 ~38,000 143.41 

GPR 0.99 4.83E-03 2.33E-05 2.01E-03 ~22,000 4283.30 

Figure 10 to Figure 16 present graphs comparing the true and predicted responses, and 

residuals for the evaluated ML models. The precision of the models can be evaluated 

graphically by analyzing the distance between the predicted response (blue dots) and the true 

response (straight black line). For the residuals’ graphs, the distance between the points and 

the zero line are the errors. The horizontal axis represents the position in the beam, from 0 to 

60cm; it is expected that the errors are higher in the position of cracks.  

From analyzing the numerical parameters in Table 1, confirmed visually by Figure 16-17, it 

was possible to conclude that the three models with the most accurate predictions were GPR, 

Ensemble and Decision Tree. These models were then tested with the remaining 20% of test 

data, previously unseen by them, and compared with the same statistical parameters in Table 

1. The results from this evaluation are presented in Table 5. 

 

Figure 10. Predicted x True responses (left) and Residuals for the GPR model. 
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Figure 11. Predicted x True responses (left) and Residuals for the Ensemble model. 

 

Figure 12. Predicted x True responses (left) and Residuals for the Decision Tree model. 

 

Figure 13. Predicted x True responses (left) and Residuals for the Gaussian SVM model. 
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Figure 14. Predicted x True responses (left) and Residuals for the Narrow NN model. 

 

Figure 15. Predicted x True responses (left) and Residuals for the Medium NN model. 

 

Figure 16. Predicted x True responses (left) and Residuals for the Wide NN model. 
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Table 2. Comparison of best performing ML models with dataset of 20% of test data (Beam 1).  

Model R2 RMSE MSE MAE 

Decision Tree 0.96 1.14E-02 1.29E-04 4.71E-03 

Ensemble 0.98 8.52E-03 7.27E-05 3.68E-03 

GPR 0.99 2.52E-03 6.35E-06 1.24E-03 

The first step of the correlation analysis was to train and test the models with experimental 

data from Beam 1, as explained. Upon evaluation of the results in Table 5, the GPR, Ensemble 

and Decision Tree models presented low errors and accurate predictions, and therefore 

remained in the analysis. Next, surface deformation data from DIC measurements in Beam 2 

were fed into the models to perform predictions on reinforcement strain. Then, the predicted 

response was compared with true values, i.e., the measurements taken by FOS instrumented 

in the tension rebar in Beam 2. This process is illustrated in Figure 17; Figure 18 presents 

comparative graphs between reinforcement strain in the tension rebar as predicted by the GPR 

method and measured by FOS in Beam 2, for loading levels 20, 30, 40 and 50kN; and Table 3 

presents the statistical errors. 

 

Figure 17. Process of developing a prediction model from Beam 1 experimental data, using this model for Beam 

2, and comparing prediction and true results. 

The models were trained with data from Beam 1, then used to predict the reinforcement strain 

from the surface deformation in Beam 2. The errors from these predictions, presented in Table 

3, are higher than those presented in Table 2, that correspond to a prediction from the same 

dataset with which the models were trained. 

Visual analysis of the graphs in Figure 18 shows that the correlation increases with the 

increased loads, which is particularly useful when lower loads are known and used to predict 

future behavior with increased loads. The peaks, which represent the position of cracks, easily 

identified in the FOS curves are not as straightforwardly seen in the Prediction curves. 

However, the overall shape of the curves is similar if noise in the Prediction curve can be 

reduced. The red dotted lines represent the position of the cracks measured by the DIC system, 

therefore, cracks in the surface of the specimen. It is worth noting that a slight difference 
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between the position of the cracks in the surface and in the reinforcement level can be expected, 

considering that these measurements occur at different depths, and that the crack planes might 

not be perfectly perpendicular to the direction of the reinforcement [5]. 

 

 

Figure 18. Comparative graphs between reinforcement strain predicted by GPR model and measured by FOS for 

Beam 2, including crack positions identified by DIC (dotted red line). 

Table 3. Statistical errors in reinforcement strain predictions (dataset: Beam 2).  

Model R2 RMSE MSE MAE 

Decision tree 0.83 2.20E-02 4.85E-04 1.64E-02 

Ensemble 0.86 2.00E-02 4.02E-04 1.54E-02 

GPR 0.82 2.21E-02 4.90E-04 1.63E-02 

3.2 Finite Element Modelling 

This section presents the numerical model and analysis performed using Finite Elements. The 

programs used were GiD, for geometry design and pre-processing, and ATENA, for post-

processing. The aim of the analysis was to numerically predict the reinforcement strain and 

compare its accuracy with the measurements from the FOS and the predicted response from 

the ML model. 

3.2.1 Material characteristics 

The model of concrete behavior used in this analysis combines constitutive models for tensile 

(fracturing), which employs the Rankine failure criterion, and compressive (plastic) behavior. 

The fracture model employs the Rankine failure criterion and bases on the classical orthotropic 

smeared crack formulation and crack band model, which assumes crack spacing larger than a 

finite element size. The hardening/softening plasticity model is based on Menétrey-Willam 
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failure surface. The model uses return mapping algorithm for the integration of constitutive 

equations [21]. The plasticity model is combined with the fracture model through an algorithm 

based on recursive substitution, which allows the models to be formulated and developed 

separately. The algorithm can describe cases in which failure surfaces are active for both 

models, and to simulate concrete cracking, crushing under high confinement, and crack 

closure due to crushing in other material directions. 

The mechanical properties of the concrete were determined using standardized concrete cube 

tests. The mean compressive (𝑓𝑐𝑚) cube strength obtained in laboratory was 50.13 MPa. Based 

on this value, a compressive cylinder strength (𝑓𝑐) of 35.8 MPa, a tensile strength (𝑓𝑐𝑡) of 2.28 

MPa, a Young’s modulus (𝐸𝑐) of 35,180.2, and a fracture energy (𝐺𝑓) of 139 N/m were derived 

and used for FEM analysis. 

Discrete bars were used to model the steel reinforcement. After the peak strength (𝑓𝑢), the 

stress was reduced to 1% of 𝑓𝑢 so that internal stress redistribution could be assured in the 

numerical computations. The support and loading plates were modelled using a linear, elastic, 

and isotropic material.  

3.2.2 Boundary conditions 

The load was applied as a predefined displacement of 0.01mm per step, through a plate of 

elastic material located on the center of the top surface of the beam. Two loading intervals 

were used, the first for self-weight, and the second for the induced displacement. A point 

monitor was used for displacements in the center of the bottom surface of the beam, and a 

linear monitor was used for strain in the bending rebars. Plates of linear elastic materials were 

also used to represent supports of the beam, and the interface between the plates and the beam 

was modeled using a fixed contact for surface condition. Figure 19 illustrates the described 

boundary conditions in the FE model. 

 

Figure 19. Boundary conditions in FE model. 

3.2.3 Numerical methods and finite elements 

A standard incremental and iterative Newton–Raphson method is used to compute the model 

stiffness in the FE model. Four solution errors were used to check the following convergence 

criteria in this study: displacement increment, normalized residual force, absolute residual 

force, and energy dissipation. Details about the convergence criteria and Newton–Raphson 

equilibrium iterations can be found in Cervenka et al. [21].  
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3D solid, hexahedral elements were used for the concrete beam. After a parametric 

investigation, adequate convergence was obtained for a structured mesh with element size 

between 15.6mm and 20mm. For the reinforcement, linear elements of 5.6mm were used, 

which implies a mesh resolution of 100 elements per rebar to provide a more accurate account 

of the strain. 

3.2.4 Results from FE 

The numerical model presented failure due to shear, as did both beams in the experiment, 

which can be seen by the distinct shear crack in Figure 20. The maximum load obtained in the 

FE model was 55.9kN, against 55.2kN for Beam 1 and 56.7kN for Beam 2. Figure 21 presents 

comparative graphs between reinforcement strain in the tension rebar measured by FOS and 

obtained in the FE analysis, for loading levels 20, 30, 40 and 50kN; and Table 4 presents the 

calculated statistical errors. 

 

Figure 20. Deformed 3D FE model displaying cracks and mesh (left), undeformed model displaying crack width 

(center), and strain in reinforcement bars (right). 

 

 

Figure 21. Comparative graphs between reinforcement strain in FE model and measured by FOS for Beam 2, 

including crack positions identified by DIC (dotted red line). 
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Table 4. Statistical errors in FE model for reinforcement strain predictions.  

Model R2 RMSE MSE MAE 

Finite Element 0.82 2.22E-02 4.84E-04 1.39E-02 

Figure 21 shows that the accuracy of the predictions is higher under elastic behavior in lower 

loads and further from the center of the beam, in the left and right edges of the length, where 

there is lower cracking. Reinforcement strain was underestimated by FE in the center of the 

beam, unlike ML predictions which presented a better agreement or an overestimation, 

preferred in terms of safety. 

The FE curve contains more peaks and valleys than the FOS curve, which has a lower number 

of peaks representing only the main cracks. In Figure 20, the deformed model to the left 

displays several cracks, even those with smaller crack width values by comparison with the 

color-coded model in the center. The FE curve, therefore, is more sensitive to crack width, and 

this is reflected in the number of irregularities in its shape. Finer meshes produce more 

irregular strain curves, as a higher number of nodes allow for the representation of cracks with 

lower distance between one-another. As mentioned in the ML analysis, the red dotted lines 

representing the cracks on the concrete surface measured by DIC are expected to have a slight 

misalignment with the peaks in the FOS curve, due to the non-linearity of the cracks. 

4. Discussion 

From the presented experimental and numerical results, the discussion focuses on establishing 

a correlation between surface deformation and reinforcement strain using ML and comparing 

the accuracy of ML and FE models to predict reinforcement strain in a RC beam. The accuracy 

of the models can be compared quantitatively through the statistical parameters in Table 5, 

and visually from the Strain x Position graphs in Figure 22.  

The numerical comparison from Table 5 shows that all the evaluated methods presented 

similar accuracy in predictions. The Ensemble method provided the most accurate predictions 

among the ML methods, with slightly higher R2 and lower values for all three errors. Its results 

were also more accurate than the FE model. The 4.88% higher R2 value means the Ensemble 

method was able to explain the variability of results to a slightly higher extent. Taking the 

RMSE as a measure of quality of the models, the 9.91% lower RMSE of the Ensemble implies 

this difference in quality. The same can be stated about the 16.94% lower MSE. The MAE value, 

however, was 10.79% higher in the Ensemble model than in the FE. 

From the graphs in Figure 22, both predictions increased in accuracy with increased loads, and 

neither was accurate in predicting the position of main cracks. Both predictions presented a 

general trend in shape similar to the experimental data, even overlapping with its curve and 

each other at some points.  

In both ML and FE methods, pre-processing was longer than processing time. For this small 

specimen, processing was in the scale of <10 minutes and therefore not a relevant comparison 

parameter. It is worth noting that the FE model can predict other aspects of structural behavior 

besides reinforcement strain, isolated here only for the purpose of this analysis and 
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comparison with the ML model. Therefore, it requires more information about the structure 

to perform accurate predictions of its behavior, unlike the ML algorithm that worked with the 

three aforementioned variables – position, load and surface deformation. Relevant 

information required by in FE modelling include detailed geometry, boundary conditions, 

material properties, and load increment. 

Table 5. Statistical comparison between ML and FE models’ predictions for reinforcement strain and FOS 

measurements in Beam 2. 

Model R2 RMSE MSE MAE 

Decision tree 0.83 2.20E-02 4.85E-04 1.64E-02 

Ensemble 0.86 2.00E-02 4.02E-04 1.54E-02 

GPR 0.82 2.21E-02 4.90E-04 1.63E-02 

Finite Element 0.82 2.22E-02 4.84E-04 1.39E-02 

 

 

Figure 22. Comparative graphs between reinforcement strain predicted by GPR model, FE model and measured 

by FOS, including crack positions identified by DIC (dotted red line). 

5. Conclusions 

The objective of this study was to obtain a numerical correlation between surface deformation 

and reinforcement strain in a RC beam specimen. To achieve that, ML and FE models were 

used, and their results were compared for accuracy. The novel contributions of this research 

can be summarized in these three aspects: presenting a quantitative correlation between 

surface deformation and reinforcement strain, using ML predictive algorithms with DIC 

technologies, and comparing the accuracy of ML and FE to predict structural behavior. From 
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the presented experimental and numerical data, discussion, and comparative statistical 

parameters, it can be concluded that: 

• Reinforcement strain could be predicted from surface deformation with an accuracy of 

86%, and errors in the scale of 10-2. 

• The most accurate prediction was obtained using ML methods, from the Ensemble 

model. The FE predictions tended to underestimate the reinforcement strain. However, 

the difference in accuracy and processing time from the predictions obtained by the 

other ML and FE models was not significant. Therefore, the prediction method can be 

chosen according to available data, user preference and other results wished to be 

obtained. 

• The location of the main cracks can be identified by the peaks in the FOS strain curves, 

however, this could not be achieved by the predicted strain curves produced by neither 

one of the two methods. Nevertheless, crack propagation on the surface is clearly 

provided by the DIC system. 

For future research, this analysis is planned to be replicated in a comprehensive experimental 

program that will be carried out at Luleå University of Technology, where two full scale trough 

bridges cast in laboratory will be tested to failure. This program is part of a broader research 

which aims at improving automated damage detection in bridge inspection and asset 

management using Digital Twins. The prediction of future behavior achieved in this analysis 

contributes as a module for Bridge Management Systems currently under study. 
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Abstract 

Throughout the world, many medieval and historic bridges remain in operation. Deterioration and 
failures have increased in the already aging bridges due to consistent growth in traffic volume and 
axle loads. Therefore, the importance of Bridge Management Systems (BMS) to ensure safety of 
operation and maximize maintenance investments has also increased. Recent improvements in 
technology also contribute to the demand for optimized and more resource-efficient BMS. In this 
study, a literature review was performed to map current bridge management practices and systems 
in operation in the world. The outcomes identified Bridge Information Modelling (BrIM) and Digital 
Twins as novel approaches that enable efficient management of the whole lifecycle of a bridge. 
From these outcomes, a framework of an ideal BMS is proposed to achieve automated and smart 
management of bridges.  

Keywords: bridges; bridge management systems; BMS; BrIM; review. 

 

 

1 Introduction 

Bridges on public roads faced lighter loads before 
the proliferation of road traffic. The reaction to the 
then increased accounts of failure was to establish 
national standards requiring regular bridge 
inspections and evaluations. The activity of 
managing and scheduling bridge inspections and 
evaluations, recording and handling bridge data, 
and making maintenance recommendations 
became known as bridge management [1]. 

Bridge management is an essential part of long-
term asset management, applicable to all existing 
bridges, old and new [2]. The main purpose of 
management is maintaining the bridges by 

identifying deficiencies and ensuring the continued 
safety of traffic through rehabilitation [2]. In the 
past few decades, the scope of bridge management 
has grown, and the goal of maximizing the effect of 
maintenance funds to protect the investment in 
bridges has been added to the primary goal of 
protecting the safety of the traveling public [1]. 

Expansion in physical infrastructure and 
improvements in technology have lead 
government authorities to find ways to enhance 
efficiency in managing maintenance activities and 
maximize the value of maintenance spending [3]. 
Recent developments in Information Technology 
(IT) promote changes in bridge management, 
better quality of inventory and inspection 
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databases, and more control over deterioration, 
forecasting, and management models [4]. Together 
with the constantly improving technology, the 
concern with investment in bridges has created a 
demand for optimized bridge management 
systems (BMS). 

This context motivated this study, which provides 
an overview on current bridge management 
practices and discusses improvements on BMS with 
regard to recent technologies development. The 
overview was conducted through a state-of-the-art 
literature review on BMS, covering BMS in the 
world, modules of a BMS and current bridge 
management practices. The systematic approach 
to the literature review is described in the 
methodology section of this paper.  

The discussion section then covers all aspects 
comprised in a BMS. The current situation is 
analysed from the perspective of the data 
presented in the review, and improvements are 
proposed based on technologies identified in the 
literature. Closing the discussion, a thorough 
modular scope for a BMS is proposed to further 
promote improved frameworks for bridge 
management. Lastly, the conclusions of the study 
are drawn in order to summarize the identified 
gaps in BMS and respective suggested 
improvements, besides recommendations for 
future studies. 

2 Methodology 

The state-of-the-art literature review of bridge 
management systems presented in this study is 
part of a broader review on facility management of 
bridges using digital models. The methodology for 
the review comprised three main steps: definition 
of the strings of research, research of the selected 
database, and assessment of the articles. A similar 
methodology is used in companion paper 
“Framework for facility management of bridge 
structures using Digital Twins”. 

The strings of research were defined based on 
keywords identified in the primary references, 
which were the result of a preliminary exploratory 
literature review. Upon assessment of the primary 
references, the most recurring keywords were 
divided into five groups of subjects. Finally, each 
group was given a set of strings as follows: 

 BIM: ("BIM" OR “Building information 
modelling”); 

 Bridges: (“Bridge information modelling” 
OR “BrIM” OR “Bridge” OR “Bridges”); 

 Digital Twins: (“Digital twin” OR “Digital 
twins” OR “DTM”); 

 Management/inspection: (“Facilities 
management” OR “Facility management” 
OR “inspection” OR “monitoring”); 

 Maintenance: (“Maintenance” OR 
“assessment”). 

Sixteen different searches were then performed in 
Scopus, the selected database. The search results 
were only limited by year, with the acceptable 
range set from 2010 to 2020 for the results to be 
considered as state-of-the-art. Each search 
contained a combination of three (ten 
combinations), four (five combinations) or five (one 
combination) groups of strings. The string search 
was applied to title, keywords and abstract of each 
paper.  

Two of the sixteen combinations were eliminated 
for being too broad, and the remaining fourteen 
combinations added up to a total of 600 results in 
Scopus. Some of the papers were eliminated 
before assessment, because the article had already 
been assessed in a previous string combination 
result, written language other than English, 
conference review paper or unrelated area of 
research (medicine, psychology, etc.).  

The selected articles were then evaluated using 
three different filters: Filter 1 for title, abstract and 
keywords; Filter 2 for introduction and conclusion; 
and Filter 3 for the entire paper. The main reason 
for rejection in all three filters was low relevance of 
the subject to the scope of this study, other than 
technical reasons such as lack of access to the full 
paper or overall quality. The articles approved after 
the third filter, that related to the main topic of this 
study, were included in the review. An iterative 
process also occurred and references from selected 
papers were assessed and included to the study as 
well.  

The distribution of the selected papers over the 
previously established range of years suggests that 
this is a rather recent field of research: 50% were 
published between 2010 and 2018, and 50% in 
2019 and 2020. The articles obtained from the 
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aforementioned methodology are addressed in the 
following literature review section, divided into the 
subsections: BMS in the world, modules of a BMS 
and current practices on bridge management. 

3 Literature review: BMS 

3.1 BMS in the world 

Generally, each country’s road administration 
entity has its own management system, with which 
tunnels, culverts, ferry berths, retaining walls, 
pavements and quays can also be managed, 
besides bridges [5]. These systems are either 
developed internally by the managing organization 
itself (with or without the help of private 
companies), or bought off-the-shelf and modified 
to suit their needs [6]. The majority of the systems 
are used only within one country, most likely due 
to the differences in bridge management practices 
between countries [6]. When systems are bought 
off-the-shelf and adopted by an agency, they are 
usually significantly modified, which results in a 
new system with a new name (e.g. Eirspan that was 
developed using DANBRO as a starting point) [6]. 

Helmerich et al. (2008) [7] ranked the best-known 
software based digital bridge management 
systems in Europe: BaTMan (Sweden), BAUT 
(Austria), DANBRO (Denmark), KUBA (Switzerland), 
SIB-Bauwerke (Germany), SMIS (United Kingdom). 
The Federal Highway Administration (FHWA), 
American Association of State Highway and 
Transportation Officials (AASHTO), and National 
Cooperative Highway Research Program (NCHRP) 
of the United States sponsored a scanning study of 
how highway agencies in Europe and South Africa 
handle bridge maintenance, management, and 
preservation [5]. The U.S. delegation met with 
bridge preservation and maintenance experts from 
these countries (apart from Austria), and also from 
Finland, France, Norway and South Africa [5]. Each 
of these countries’ management system, condition 
rating scale and frequency of bridge inspections are 
presented in Table 1. 

Table 1. Bridge management systems for different 
countries. Adapted from FHWA (2005) [5]. 

C
o

u
n

tr
y 

Management 
system 

Rating 
scale 

Bridge 
inspections 
(frequency) 

D
en

m
ar

k 

DANBRO, 
DANBRO+ 

0-to-5 

Principal (6 
years), Daily (road 

patrol), 
Semiannual 

Fi
n

la
n

d
 

HiBris, Hanke-
Siha 

0-to-4 
Annual, General 

(5 years) 

Fr
an

ce
 

LAGORA 1-to-3 

Routine 
(frequent), 

Annual, Condition 
Evaluation (3 

years), Detailed (3 
to 9 years) 

G
er

m
an

y 

SIB-Bauwerke 1-to-4 

Superficial (3 
months), General 
(3 years), Major 

(6 years) 

N
o

rw
ay

 

Brutus 1-to-4 
General (1 year), 
Major (5 years) 

So
u

th
 

A
fr

ic
a 

STRUMAN 
Four 

categor
ies* 

Monitoring 
(frequent), 

Principal (3 to 5 
years) 

Sw
ed

en
 

BaTMan 
Three 

categor
ies** 

Regular 
(frequent), 

Superficial (6 
months), General 
(3 years), Major 

(6 years) 

Sw
it

ze
rl

an
d

 

KUBA, UplaNS  Principal (5 years) 

U
n

it
ed

 

K
in

gd
o

m
 

SMIS 1-to-5 
General (2 years), 
Principal (6 years) 

*Degree (severity), extent, relevancy (in the load path), 
and urgency of repair 
**Physical, functional and economic condition (related 
to extent of damage) 
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In the United States, the FHWA sponsored the 
creation of two highway BMS - BRIDGIT and 
PONTIS, and both deal with management of 
bridges on state and interstate highways [1]. 
PONTIS is the predominant bridge management 
system employed in the USA. It is currently 
managed by AASHTO and has been renamed BrM 
(in reference to bridge management) [1, 8].  

Some of the other BMS currently in operation in 
the world are: SAMOA, APTBMS (Italy) [6, 9]; FBMS 
(Finland), GBMS (Germany), Eirspan (Ireland), DISK 
(Netherlands), SMOK/SZOK (Poland), SGP (Spain) 
[6]; GOA (Portugal) [10]; OBMS, QBMS, EBMS, PEI 
BMS, GNWT (Canada) [6]; SGO (Brazil) [11]; Bridge-
ASYST, MRWA and NSW(Australia) [6, 9]; MICHI, 
RPIBMS (Japan) [6, 9]; T-BMS (Taiwan) [12]; KRMBS 
(Korea) [6]. 

3.2 Modules of a BMS 

Each one of the systems presented in the previous 
section can be used by their country’s road 
administration agency to perform a different set of 
management activities. The tasks can vary 
according to the specific needs and resources of 
each country, they can be more or less thorough 
and frequent, and prioritize different parts of the 
BMS scope. However, the scope itself is similar 
among different BMS, as it consists primarily of 
inspection, structural health monitoring and 
rehabilitation [2]. 

Inspection is the first step, in which the inspectors 
establish the physical and functional conditions of 
individual structural members, as well as the entire 
bridge [13]. Along with the inspectors’ own 
experience, the condition is assessed using 
equipment, well-developed tools and techniques 
[13]. Lastly, after applying a rating criteria to 
determine the condition of the bridge, 
rehabilitation procedures are applied [2]. 

The management tasks are usually divided into 
different modules in the systems. For a BMS to 
function efficiently, the system modules need to be 
integrated internally to minimize duplication and 
user inputs, and thus achieve optimal performance 
[3]. The modules are usually related to inventory, 
inspection, condition analysis and maintenance 
planning. The main module is the inventory, which 
is considered the foundation from which the rest of 

the BMS operates [3]. According to Woodward et 
al. (2001) [14], a bridge management system that is 
able to answer the various objectives of the 
managers must be modular and incorporate at 
least the following principal modules: 

1. Inventory of the stock; 
2. Knowledge of bridge and element 

condition and its variation with age; 
3. Evaluation of the risks incurred by users 

(including assessment of load carrying 
capacity); 

4. Management of operational restrictions 
and the routing of exceptional convoys; 

5. Evaluation of the costs of the various 
maintenance strategies; 

6. Forecast the deterioration of condition and 
the costs of various maintenance 
strategies; 

7. Socioeconomic importance of the bridge 
(evaluation of indirect costs); 

8. Optimization under budgetary constraints; 
9. Establishment of maintenance priorities; 
10. Budgetary monitoring on a short and long-

term basis. 

3.3 Current practices on bridge 
management 

In order to handle the amount of information 
required to achieve optimal management of 
infrastructure, managing agents are using 
increasingly sophisticated computerized 
management systems to support their decision 
making process [6]. Mirzaei et al. (2014) [6] 
conducted a survey which contemplated 25 bridge 
management systems, used to manage 
approximately 1.000.000 objects, from 18 
countries. Table 2 and Figure 1 present the 
surveyed systems, their respective countries and 
the number of managed objects (bridges, culverts, 
tunnels, retaining structures and other objects). 

The main results of the survey conducted by 
Mirzaei et al. (2014) [6], which contemplated 25 
infrastructure management systems currently in 
operation, are presented in Table 3. The results 
concern: data entry and information access; stored 
information; information handled on the structure 
level; cost information; predictive capabilities; use 
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of prediction information; education and 
qualification of those that use the systems. 

Table 2. Surveyed systems – number of bridges and 
other objects. Adapted from Mirzaei et al. (2014) 
[6].   

C
o

u
n

tr
y 

B
M

S 

B
ri

d
ge

s 

O
th

e
r 

o
b

je
ct

s 

To
ta

l 

Australia MRWA 2 815 83 2 898 

Australia NSW 2 702 3 441 6 143 

Canada eBMS 373 - 373 

Canada GNWT 102 253 355 

Canada OBMS 2 800 2 600 5 400 

Canada PEI BMS 800 400 1 200 

Canada QBMS 8 700 2 400 
11 

100 

Denmark DANBRO 2 250 - 2 250 

Finland FBMS 13 787 3 278 
17 

065 

Germany GBMS 10 000 - 
10 

000 

Ireland Eirspan 2 997 - 2 997 

Italy APTBMS 1 108 845 1 953 

Japan RPIBMS 4 239 779 5 018 

Korea KRMBS 6 192 - 6 192 

Latvia Lat Brutus 934 1 045 1 979 

Netherlands DISK 3 836 1 755 5 591 

Norway BRUTUS 11 500 8 580 
20 

080 

Poland SMOK 7 902 
25 

348 
33 

250 

Spain SGP 24 534 
15 

511 
40 

045 

Sweden BaTMan 33 000 
12 

790 
45 

790 

Switzerland KUBA 12 574 
18 

739 
31 

313 

USA AASHTO 
500 
000 

250 
908 

750 
908 

USA ABIMS 9 728 6 114 
15 

842 

Vietnam Bridgeman 4 239 - 4 239 

 

Figure 1. Percentage of object types in each 
system. Adapted from Mirzaei et al. (2014) [6]. 

Table 3. Current practices in BMS [6]  

No (%) Item 

Data entry and information access 

11 (44%) allow data entry through mobile computers 

12 (48%) 
allow access to information in the system 
over the internet. 

Stored information 

 7 (28%) 

allow archive of basic construction 
information in the system (the majority of 
systems allow the information to be either 
stored in some way or referenced). 

24 (96%) allow archiving of inspection information. 

23 (92%) allow archiving of intervention history. 

Information handled on the structure level 

24 (96%) 
handle condition information from 
inspections. 

20 (80%) 
handle information on load carrying 
capacity. 

19 (76%) 
handle information from inspections with 
respect to safety. 

18 (72%) 
handle information from inspections with 
respect to risk. 

Cost information 

24 (96%) can handle intervention cost information. 
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6 (24%) handle inspection costs. 

11 (44%) handle traffic delay costs. 

7 (28%) handle accident costs. 

8 (32%) consider environmental costs. 

Predictive capabilities 

19 (76%) 
can predict deterioration, 12 of these 
systems use probabilistic methods. 

18 (72%) 
can predict the improvement due to future 
interventions (9 use probabilistic methods). 

19 (76%) 
are capable of determining optimal 
intervention strategies. 

Use of prediction information 

23 (92%) are used to prepare budgets. 

15 (60%) are used to set performance standards. 

13 (52%) are used to match funding sources. 

Education and qualification of those that use the 
systems 

25 
(100%) 

provide education for inspectors that enter 
data into the system (21 also provide 
certifications). 

22 (88%) 
provide education for users of the system 
(11 also provide certifications). 

14 (56%) 
have audits to use and verify data and 
predictions. 

4 Discussion 

The overview in Table 3 of some of the BMS 
currently in operation shows that there is room for 
improvement in many aspects. This section 
presents an analysis of current practices in bridge 
management systems, mainly supported from, but 
not restricted to, the data in Table 3. 
Improvements are proposed, based on technology 
identified in the literature, as well as a thorough 
modular scope for a BMS. 

Each country currently handles infrastructure 
management independently. However, a certain 
level of standardization in the field of bridge (or 
infrastructure) management can enhance the 
exchange of knowledge and experience between 
managing agents, thus improving the management 
systems [6]. Figure 2 presents a modular 
framework of activities that should compose a 
complete and thorough BMS, proposed after 

evaluation of different intakes into the scope of a 
BMS [2, 3, 4, 11, 12, 14, 15, 16]. None of the existing 
BMS includes geometric representation of bridges 
[6, 17]. A BIM model offers a comprehensive, 
accurate and up-to-date digital representation of a 
building, and many modern researches integrate 
BMS frameworks with BIM models to achieve 
smarter and automated management throughout 
the life cycle of the bridge [17, 18, 19, 20, 21, 22]. 
Traditional, paper-based methods of maintaining 
infrastructure, are no longer viable as governments 
now expect digital tools that leverage information 
and communication technology (ICT) [3]. Solutions 
within the Internet of Things (IoT) are increasingly 
becoming part of bridge inspection, condition 
assessment, structural analysis and BMS 
frameworks.  

More than half of the systems in Table 3 do not 
allow remote or online access to the BMS, only 
access through desktop computers, which 
represents a limitation to information access. 
Therefore, this should be a point of improvement, 
especially since many of the technological 
advances in BMS include the use of mobile and 
portable technology. For example, checklists for 
inspections that are filled on site using mobile 
technology and uploaded directly to a BIM model 
using programming language [19]. The connection 
between a BIM model and the BMS can be done 
through different methods, such as structured 
query Language (SQL) statements [19]; C# [19], 
Matlab [23, 24] or other programming languages; 
IFC [17, 21, 22, 25, 26]; machine learning [27, 28, 
29] and artificial intelligence algorithms [18]. 

Although inspection and intervention data are 
contemplated in most of the analysed BMS, 
information from construction of the bridges is still 
not integrated well into the majority of these 
systems. When considering the entire life cycle of 
the bridge, the BMS should store original 
construction designs and plans for the bridge so 
that they can be compared with the current 
condition data obtained from inspections. From 
that, future deterioration can me more accurately 
predicted and planning for interventions can be 
done accordingly. 

Regarding the condition assessment, most systems 
already seem to deal with information about load 
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carrying capacity, safety and risk. Predictions of 
deterioration – i.e. changes in physical condition or 
performance indicators [6], are also frequently 
performed, mainly through probabilistic methods. 
However, there have been many advancements in 
structural analysis in BMS frameworks that can be 
applied to improve this field, such as automated 
bridge assessment through artificial intelligence 
algorithms [18] and association of BIM models with 
FEM models [19, 20], GIS [21] and risk breakdown 
structures (RBS) [30, 31]. 

The outcome of these predictions is currently used 
mainly for budgetary purposes, according to the 
data in Table 3. Therefore, increasing the quality of 
the predictions can have a direct impact on budget 
analysis. Budget information is handled by most 
systems on a more basic level of analysing 
intervention cost. Peripheral costs, such as traffic 
delay, accident and environment costs, are not 
approached by most systems, and only a few of 
them handle inspection costs. Recent research on 
bridge inspection aims at adding automation to the 
process, which can also improve cost-efficiency. 
This can be an opportunity for agencies to reduce 
maintenance costs. Therefore, it would be 
beneficial to have an integrated system that 
contemplates budget analysis throughout the 
bridge’s life cycle.  

5 Conclusion  

Increased bridge deterioration and failures have 
enhanced the need to maintain the already aging 
bridges. This necessity amplified the concern with 

investment in bridge management that, together 
with the constant improvement of technology, has 
created a demand for optimized bridge 
management systems (BMS).  

Solutions within the Internet of Things (IoT) are 
increasingly becoming part of bridge inspection, 
condition assessment, structural analysis and BMS 
frameworks. Some of the improvements identified 
from the analysis of current BMS are:  

 Including a geometric representation for 

the bridge, such as a BIM model, integrated 

and connected into the system; 

 Allowing remote or online access to the 

BMS; 

 Adopting automated inspection 

procedures, such as automated damage 

detection, that can be linked to the system, 

preferably directly to a BIM model; 

 Life cycle analysis contemplated into the 

system. This includes better integration of 

construction information, to compare with 

current condition obtained from 

inspections, and deterioration predictions, 

performed with structural analysis tools, 

such as FEM, so that planning for 

interventions can be done accordingly. 

 Improved structural analysis and 

deterioration predictions, which can have 

a direct impact on budget analysis.  

 Budget analysis throughout the bridge’s 

life cycle integrated into the system, 

Figure 2. Management activities that compose the scope of a BMS 
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contemplating also peripheral costs, such 

as traffic delay, accident and environment 

costs, inspection and maintenance costs.  

The broader research that contains this study aims 
at developing a BMS for facility management of 
bridges using digital twins. This system, or systems, 
should have modules or layers that connect among 
themselves to perform thorough life-cycle 
management. Future work will then include a 
deeper insight into automated damage detection 
for bridge inspections, machine learning and 
algorithms to improve the links within the system.  
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